【智能计算模拟:DFT+MD+ML深度融合及科研实践应用】

第一性原理、分子动力学与机器学习三者的交汇融合已在相关研究领域展现强劲的研究热潮。借助第一性原理计算揭示材料内在的量子特性,并结合分子动力学模拟探究材料在实际环境下的动态行为;运用机器学习算法与上述方法结合,开发高性能预测模型与模拟工具,能有效缩短研发周期,降低计算成本,实现对新型化合物性质的高精度预测。

“第一性原理+分子动力学+机器学习”三位一体的综合手段,已经成为模拟计算的一个前沿方向,为解决传统计算化学方法面临的挑战提供了新的解决方案。国内外已有科研团队在深化第一性原理与分子动力学的研究与应用拓展,利用机器学习优化大规模计算、快速筛选潜在功能材料等方面取得重要突破。尤其是在国家创新驱动发展战略的引领下,越来越多的科研项目聚焦于如何利用人工智能手段解决能源、环保、医药等重大领域的核心问题。这一前沿交叉领域的研究发展趋势呈现出高度集成化、智能化的特点,为我国科技创新注入源源不断的活力
智能计算模拟:DFT+MD+ML深度融合及科研实践应用

第一部分

DFT+MD+ML基础

  1. 理论内容

1.1. 计算模拟发展:MD, MC, DFT三大部分

1.2. 人工智能时代背景:大数据与大模型对模拟计算的影响

1.3. 人工智能加入给传统模拟计算带来的哪些变化?

① 模型建构的新趋势

② 力场开发中的机器学习应用

③ AI在模拟过程优化与加速中的作用

④ 数据后处理技术的发展与智能化

1.4. 统计物理基本理论(系综、边界条件、温度的定义、控温与热浴等)

  1. 实例操作

2.1. 软件环境搭建与安装:conda配置虚拟环境,安装GPUMD、LAMMPS、ASE、 Phono3PY、PyNEP、 OVITO、VMD、ATOMSK等软件

2.2. 力场参数生成与MD模拟操作:综合使用MS软件+MSI2LMP快速生成任意有机分子的PCFF/CVFF力场参数文件,并使用LAMMPS软件执行分子动力学模拟

2.3. MS软件的基本介绍与LAMMPS结合使用

a. MSI2LMP与PCFF/CVFF力场的简介

b. LAMMPS入门与经验势使用

c. 简单的分子动力学计算

2.4. 高精度量化数据集获取与机器学习融入MD模拟

a. VASP计算静态与AIMD的参数设置

b. 简单的力场计算实践、LAMMPS的基本使用(机器学习势)

c. LAMMPS与机器学习势函数结合的MD模拟

d. 机器学习模型的加载和使用要点

2.5. 数据后处理技术与可视化分析

a. 使用OVITOs的相关代码分析处理数据,包括AIMD和机器学习分子模拟的RDF, MSD, 扩散系数以及键角和二面角的分布情况

b. OVITO软件的基本使用

c. 键角和二面角分布的统计与绘图实现,以及python画图和origin画图的双示例

第二部分

机器学习力场学习与实践

  1. 理论内容

1.1. 机器学习力场的重要工作

1.2. 机器学习、神经网络核心原理和训练过程

1.3. 机器学习力场构建流程、应用与优势

1.4. 图神经网络和图卷积网络

a. GNN/GCN概述、SchNet模型特点与实现

b. 消息传递神经网络框架

c. GAP、MTP、ACE、DP、NEP模型深入探讨与对比

1.5. DeePMD在国内的研究与应用现状

1.6. 高性能机器学习力场模型介绍

1.7. NEP+GPUMD系列研究解读

  1. 实例操作(NEP+GPUMD集成实战:全流程模型构建与模拟)

2.1. 数据格式转换与数据集构建:使用公开代码工具转化数据格式,并生成训练,验证和测试数据集

2.2. NEP模型超参数设定与理解

2.3. NEP模型全流程操作:安装、准备数据集、训练、验证和测试

2.4. 使用LAMMPS和GPUMD模型执行高精度、高效率、大规模分子动力学模拟

2.5. 机器学习力场驱动的模拟数据后处理与分析

第三部分

机器学习力场等变模型系列及领域热点

  1. 理论内容

1.1. MACE模型:融合ACE、消息传递与等变性的创新

1.2. 方法的完备性,效率和系列演进

1.3. 适用于大规模GPU并行框架的NEP模型

1.4. 主流机器学习力场模型的详析与对比

  1. 实例操作:(以石墨烯等二维材料为例,深度探究MACE及其他ML力场模型的实践应用)

2.1. NequIP或MACE模型超参数设置与实际应用

2.2. 结合LAMMPS或ASE使用MACE模型构建势函数

2.3. MACE与DeePMD、NEP的精度、数据效率对比

2.4. 计算RDF、MSD、扩散系数等物性并重现文献结果

2.5. 构建及对比DP、NEP、ACE等多种ML力场模型

第四部分

数据收集方法与应用

  1. 理论部分

1.1. 公开数据集资源

1.2. 数据增强技术

a. 主动学习技术

b. AIMD+微扰等数据集扩充手段

c. 数据集数据集精简与筛选策略

d. 模型微调技术

  1. 实例操作:(主动学习与模型微调在计算模拟中的实践–液态水、SiO2、MOF的完全演示案例)

2.1. ASE环境下主动学习实现与代码解析

2.2. 多GPU并行或单GPU多任务并行与资源优化

2.3. 自主设计主动学习方案

2.4. 预训练模型微调实践

2.5. 微调与从头训练效果对比

2.6. 不同模型(如金属、团簇、孪晶结构、多晶石墨烯)的构建实例

S. 其他备选内容

S1. 其他机器学习内容拓展应用,DNN、DT、XGBoost在计算模拟领域的应用,以多晶石墨烯为例

S2. PFC相场方法建立多晶石墨烯、石墨烯晶界描述符的选取、深度神经网络的训练(与其他机器学习方法对比)、预测

S3. VMD与OVITO等输出高质量的分子结构视觉化效果
关注–分子动力学术交流公众号,获取更多实践知识
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/491928.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智能医疗-方案优势

实时更新,信息展示更便利 电子标签床头信息卡可设计特定的信息模板展示病患信息,并可根据治疗进展实时更新,病患通过床头电子标签即可了解病情信息。 —签多能,医护管理更高效 电子墨水屏技术改进了传统院内展示内容单一、更换成…

edga 0x800704cf错误码(同步失败)

edga 0x800704cf错误码(同步失败) 执行此操作需要 Internet。 你似乎没有连接到 Internet。请检查你的连接,然后再试一次。 0x800704cf 发送反馈 取消windows键R, 输入services.msc 进入本地服务管理, 重启 Microsoft Account Sign-in Assi…

【探索Linux】—— 强大的命令行工具 P.30(序列化和反序列化 | JSON序列化库 [ C++ ] )

阅读导航 引言一、序列化反序列化概念二、各种语言序列化反序列化常用库三、C的JSON序列化库1. RapidJSON库(1)头文件(2)相关函数(3)参数(4)特点 (5)使用示例…

零拷贝技术、常见实现方案、Kafka中的零拷贝技术的使用、Kafka为什么这么快

目录 1. 普通拷贝 2. 数据拷贝基础过程 2.1 仅CPU方式 2.2 CPU&DMA方式 3.普通模式数据交互 4. 零拷贝技术 4.1 出现原因 4.2 解决思路 4.2.1 mmap方式 4.2.2 sendfile方式 4.2.3 sendfileDMA收集 4.2.4 splice方式 5. Kafka中使用到的零拷贝技术 参考链接 本…

windows下powershell与linux下bash美化教程(使用starship)

starship美化教程 Win11 Powershell 安装 在命令行使用下面命令安装 # 安装starship winget install starship将以下内容添加到 Microsoft.PowerShell_profile.ps1,可以在 PowerShell 通过 $PROFILE 变量来查询文件的位置 Invoke-Expression (&starship i…

gitee多用户配置

一、引言 在工作的时候我们有时候会自己创建项目Demo来实现一些功能,但是又不想把自己的Demo代码放到公司的仓库代码平台(gitee)中管理,于是就是想自己放到自己的Gitee中管理,于是就需要配置Git多用户。 本文将配置分别…

【4月】组队打卡《山有木兮Python数据分析极简入门》

活动名称 CDA Club 第2期《山有木兮Python数据分析极简入门》组队打卡 活动介绍 本次打卡活动由CDA俱乐部旗下学术部主办。目的是通过数据分析科普内容,为数据分析爱好者提供学习和交流的机会。方便大家利用碎片化时间在线学习,以组队打卡的形式提升学…

Kindling the Darkness:A Practical Low-light Image Enhancer

Abstract 在弱光条件下拍摄的图像通常会出现(部分)可见度较差的情况。,除了令人不满意的照明之外,多种类型的退化也隐藏在黑暗中,例如由于相机质量有限而导致的噪点和颜色失真。,换句话说,仅仅调高黑暗区域的亮度将不…

Altair(澳汰尔) Radioss® 评估和优化动态载荷下的高度非线性问题

Altair(澳汰尔) Radioss 评估和优化动态载荷下的高度非线性问题 Radioss 是一款超前的分析解决方案,可评估和优化动态载荷下的高度非线性问题。它广泛应用于全球各行各业,能有效提高复杂设计的耐撞性、安全性和可制造性。 30 多…

iOS - Runtime - Class的结构

文章目录 iOS - Runtime - Class的结构前言1. Class的结构1.1 Class的结构1.1.1 objc_class1.1.2 class_rw_t1.1.3 class_ro_t 1.2 class_rw_t和class_ro_t的区别1.3 class_rw_t和class_ro_t的关系1.3.1 分析关系1.3.2 原因 1.4 method_t1.4.1 Type Encoding1.4.2 types iOS - …

00000基础搭建vue+flask前后端分离项目

我完全是参考的这个vue3flask前后端分离环境速建_flask vue3-CSDN博客 安装了node_js(添加了环境变量) 环境变量 把原来的镜像源换成了淘宝镜像源 npm config set registry https://registry.npmmirror.com/ 查看版本证明安装成功 npm - v 安装npm i…

web自动化测试系列-selenium的运行原理和常用方法介绍(二)

目录 1.selenium的运行原理 2.常用方法介绍 接上文 :web自动化测试系列-selenium的安装和运行(一)-CSDN博客 在上文中我们编写了一段简单的代码 ,可以驱动浏览器访问百度并搜索关键字 。这里我们再把这段代码再拿来加以说明 。 # 1. 导包 from selen…

gitee拉取与推送

🌱博客主页:青竹雾色间 😘博客制作不易欢迎各位👍点赞⭐收藏➕关注 目录 一,从本地推送项目到gitee1.首先我们在gitee上创建一个仓库2.clone远程仓库到本地3.git的三板斧3.1. add - 将代码添加到本地仓库3.2. commit …

入行AI写作第一个月收入2万+复盘分享

AI写作作为一种新兴的创作方式,正逐渐改变着内容产业的生态。在这个领域中,许多人通过自己的努力和智慧,实现了快速的成长和收入的增长。本文将从技术学习与掌握、实践与应用、内容创作与优化、持续学习与创新、总结与复盘这五个方面&#xf…

Python时间序列异常检测库之adtk使用详解

概要 ADTK(Anomaly Detection Toolkit)是一个用于时间序列异常检测的Python库。它提供了一系列工具来识别时间序列数据中的异常模式,适用于多种监测和预测任务。 ADTK简介 ADTK专注于时间序列异常检测,支持多种异常检测算法,包括统计学方法、机器学习模型以及基于规则的…

配置Web运行环境与第一个网页

安装与配置Web环境: 如下使用了VSC作为web的运行环境。 下面是VSC的官网点击进入:Download Visual Studio Code - Mac, Linux, Windowshttps://code.visualstudio.com/download 1.下载 进入官网后可以看到有windows,linux,还有苹果按照自己的系统下载&…

Halcon深度学习项目实战系统教程

Halcon在机器视觉中的价值主要体现在提供高效、可扩展、灵活的机器视觉解决方案,帮助用户解决各种复杂的机器视觉问题,提高生产效率和产品质量。 缩短产品上市时间 Halcon的灵活架构使其能够快速开发出任何类型的机器视觉应用。其全球通用的集成开发环境(HDevelop)有助于降…

CDLKF不锈钢浸入式多级离心泵

一、构造特点与工作原理 CDLKF型不锈钢浸入式多级离心泵采用了先进的设计理念,其结构紧凑,占地面积小。泵体采用优质不锈钢材料,不仅保证了良好的抗腐蚀性和耐磨性,同时也确保了泵的长期稳定运行。 该泵的核心部件是多级离心叶轮&…

数字孪生在教学培训的应用场景

数字孪生技术在教学培训领域的应用场景非常广泛,它通过创建一个真实世界的虚拟副本,为教育和培训提供了全新的方法和手段。以下是一些具体的应用场景,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司&#…

2024/3/26 C++作业

定义一个矩形类(Rectangle),包含私有成员:长(length)、宽(width), 定义成员函数: 设置长度:void set_l(int l) 设置宽度:void set_w(int w) 获取长度:int…