【Leetcode】top 100 二叉树

基础知识补充

完全二叉树:顺序存储(数组)

        非根节点的父节点序号floor((i-1)/2)

        序号i的左孩子节点序号2*i+1  右孩子节点序号2*i+2

一般二叉树:链式存储

        结构:left指针指向左子节点,right指针指向右子节点,data存储数据项;

class TreeNode(object):        
    def __init__(self, data, left=None, right=None):        
        self.data = data            
        self.left = left            
        self.right= right           

平衡二叉树:左子树和右子树的高度之差的绝对值不超过1,且左子树和右子树也是平衡二叉树;

二叉搜索树:左子树上所有节点的值都小于根节点的值,右子树上所有节点的值都大于根节点的值,且左子树和右子树也是二叉搜索树

基础操作补充

1. 二叉树的插入

        先判断父节点是否存在,再判断左子节点是否存在;构建右子节点后需要弹出父节点;

class BinTree():
    def _init__(self):
        self.root = None 
        self.ls =[]

    def add(self,data):
        node = TreeNode(data)
        if self.root == None:
            self.root = node
            self.ls.append(self.root)
        else:
            rootNode = self.ls[0]
            if rootNode.left == None:
                rootNode.left = node
                self.ls.append(rootNode.left)
            elif rootNode.right == None:
                rootNode.right = node
                self.ls.append(rootNode.right)
                
                self.ls.pop(0)          #弹出子树已满的节点

2. 二叉树的遍历

        前序遍历(深度优先)当前节点-当前节点的左子树-当前节点的右子树    递归或栈实现

        中序遍历(深度优先)当前节点的左子树-当前节点-当前节点的右子树    递归或栈实现

        后序遍历(深度优先)当前节点的左子树-当前节点的右子树-当前节点    递归或栈实现

        层序遍历(广度优先)各层级中从左到右的遍历    队列实现

已知两种二叉树遍历序列(其中需要包括中序遍历)可以唯一确定一棵二叉树;

#前序遍历的递归实现    
    def preOrderTraversal(self,root):  
        if root == None: return
        print(root.data)
        self.preOrderTraversal(root.left)
        self.preOrderTraversal(root.right)

#前序遍历的栈实现
    def preOrderStack(self,root):     
        if root == None:return
        stack =[]   #存放节点
        result =[]  #存放节点值
        node = root
        while node or stack:
            while node:              
                result.append(node.data)
                stack.append(node)
                node = node.left
            node = stack.pop()
            node = node.right
        print(result)

#中序遍历的递归实现
    def inOrderTraversal(self,root):  
        if root == None: return
        self.preOrderTraversal(root.left)
        print(root.data)
        self.preOrderTraversal(root.right)

#中序遍历的栈实现
    def inOrderStack(self,root):     
        if root == None:return
        stack =[]   #存放节点
        result =[]  #存放节点值
        node = root
        while node or stack:
            while node:              
                stack.append(node)
                node = node.left
            node = stack.pop()
            result.append(node.data)
            node = node.right
        print(result)

#后序遍历的递归实现
    def postOrderTraversal(self,root):  
        if root == None: return
        self.preOrderTraversal(root.left)
        self.preOrderTraversal(root.right)
        print(root.data)

#后序遍历的栈实现
    def inOrderStack(self,root):     
        if root == None:return
        stack =[]   #存放节点
        result =[]  #存放节点值
        seq = []
        node = root
        while node or stack:           #左-右-根视为根-右-左(前序的左右互换)的逆序
            while node:     
                seq.append(node.data)         
                stack.append(node)
                node = node.right      #内外层左右互换
            node = stack.pop()
            node = node.left
        while seq:
            result.append(seq.pop())   #逆序
        print(result)

#层序遍历的队列实现
    def levelOrder(seLf, root):       
        if root == None:return
        queue =[]
        result =[]
        node = root
        queue.append(node)
        while queue:
            node = queue.pop(0)
            result.append(node.data)
            if node.left != None:queue.append(node.left)
            if node.right != None:queue.append(node.right)
        print(result)
题目
94 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

方法一:递归实现

方法二:栈实现

class Solution(object):
    def inorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """

        if root == None: return
        stack = []
        result = []
        node = root
        while node or stack:
            while node:
                stack.append(node)
                node = node.left
            node = stack.pop()
            result.append(node.val)
            node = node.right
        return result

方法三颜色标记法:给每个节点一个访问状态,未访问为白,已访问为黑;

中序出栈顺序:左-中-右      对应的入栈顺序:右-中-左        栈:先进后出

class Solution(object):
    def inorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        white, black = 0, 1
        result = []
        stack = [(white, root)]
        while stack:                         
            color, node = stack.pop()
            if node is None:continue
            if color == white:
                stack.append((white, node.right))
                stack.append((black, node))
                stack.append((white, node.left))      # 适用于前中后序遍历,改变这里位置即可
            else:
                result.append(node.val)
        return result

方法四:莫里斯遍历 

思路:如果左节点不为空,就将当前节点和右子树全部挂在左子树的最右子树下;

           如果左节点为空,打印节点,并向右遍历;

class Solution(object):
	def inorderTraversal(self, root):
		"""
		:type root: TreeNode
		:rtype: List[int]
		"""
		res = []
		pre = None
		while root:
			# 如果左节点不为空,就将当前节点连带右子树全部挂到左节点的最右子树下面
			if root.left:
				pre = root.left
				while pre.right:
					pre = pre.right
				pre.right = root          
				tmp = root             
				root = root.left       # 切换到左子树的父节点
				tmp.left = None        # 取消当前节点到左子树的链接
			# 左子树为空,则打印这个节点,并向右边遍历	
			else:
				res.append(root.val)
				root = root.right
		return res
 104 二叉树的最大深度

给定一个二叉树 root ,返回其最大深度。

方法一:二叉树最大深度 = max(左子树高度, 右子树高度)+1

class Solution(object):
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if root is None: return 0 
        else: 
            left_height = self.maxDepth(root.left) 
            right_height = self.maxDepth(root.right) 
            return max(left_height, right_height) + 1 

方法二:用临时队列维护每层节点,一层结束后将深度+1

class Solution:
    def maxDepth(self, root):
        if not root: return 0
        queue, res = [root], 0
        while queue:
            tmp = []
            for node in queue:
                if node.left: tmp.append(node.left)
                if node.right: tmp.append(node.right)
            queue = tmp
            res += 1
        return res
 226 翻转二叉树

给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

方法一:用栈做中序遍历:

class Solution(object):
    def invertTree(self, root):
        """
        :type root: TreeNode
        :rtype: TreeNode
        """
        stack = []
        node = root
        while node or stack:
            while node:
                stack.append(node)
                node = node.left
            node = stack.pop()
            node.left, node.right = node.right, node.left
            node = node.left
        return root

方法二:用队列做层级遍历

class Solution(object):
	def invertTree(self, root):
		"""
		:type root: TreeNode
		:rtype: TreeNode
		"""
		if root is None:return
		queue = [root]
		while queue:
			tmp = queue.pop(0)
			tmp.left,tmp.right = tmp.right,tmp.left
			if tmp.left:queue.append(tmp.left)
			if tmp.right:queue.append(tmp.right)
		return root

 方法三:递归实现

class Solution(object):
	def invertTree(self, root):
		"""
		:type root: TreeNode
		:rtype: TreeNode
		"""
		if root is None: return
		root.left,root.right = root.right,root.left
		self.invertTree(root.left)
		self.invertTree(root.right)		
		return root
101 对称二叉树

给你一个二叉树的根节点 root , 检查它是否轴对称。

 方法一:用队列做层级遍历,判断每层节点是否对称

class Solution(object):
    def invertTree(self, root):
        """
        :type root: TreeNode
        :rtype: TreeNode
        """
        quece = [root]
        while quece:
            tmp = []
            val = []
            for node in quece:
                if node.left:
                    tmp.append(node.left)
                    val.append(node.left.val)
                else:val.append(101)                # 101是节点值范围之外的数
                if node.right:
                    tmp.append(node.right)
                    val.append(node.right.val)
                else:val.append(101)
            if val != val[::-1]:return False        # 耗时
            quece = tmp
        return True 

# 不用滚动队列的话就一次性考虑两个节点,并在放置时将需要比较的节点相邻放置
class Solution(object):
	def isSymmetric(self, root):
		"""
		:type root: TreeNode
		:rtype: bool
		"""
		if not root or not (root.left or root.right):return True	
		queue = [root.left,root.right]
		while queue:
			left = queue.pop(0)      
			right = queue.pop(0)
			if not (left or right):  # 两个节点都为空
				continue
			if not (left and right): # 两个节点中有一个为空
				return False
			if left.val!=right.val:  # 两个节点的值不相等
				return False

			queue.append(left.left)
			queue.append(right.right)
		
			queue.append(left.right)
			queue.append(right.left)

		return True

方法二:递归实现

class Solution(object):
	def isSymmetric(self, root):
		"""
		:type root: TreeNode
		:rtype: bool
		"""
		if not root: return True
		def dfs(left,right):
			if not (left or right):   # 两个节点都为空
				return True
			if not (left and right):  # 两个节点中有一个为空
				return False
			if left.val!=right.val:   # 两个节点的值不相等
				return False
			return dfs(left.left,right.right) and dfs(left.right,right.left)

		return dfs(root.left,root.right)
 543 二叉树的直径

给你一棵二叉树的根节点,返回该树的 直径 。二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。两节点之间路径的 长度 由它们之间边数表示。

分析:直径 = 左子树到父节点的最长路径 + 右子树到父节点的最长路径

           左/右子树到父节点的最长路径 = 左/右子树深度

           子树深度不用重复计算:height = max(左子树深度, 右子树深度)+1

方法一:使用全局变量

class Solution(object):
    def diameterOfBinaryTree(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        global maxx 
        maxx = 0
        def depth(root):
            if root is None:return 0
            left = depth(root.left)
            right = depth(root.right)
            global maxx
            maxx = max(maxx, left+right)
            return max(left, right)+1
        
        depth(root)
        return maxx

方法二:不使用全局变量

class Solution(object):
    def diameterOfBinaryTree(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        depth, length = self.depth(root)
        return length

    def depth(self, root):
        if root is None:return (0, 0)
        left_depth, left_length = self.depth(root.left)
        right_depth, right_length = self.depth(root.right)

        depth = max(left_depth, right_depth) + 1
        length = max(left_length, right_length, left_depth + right_depth)
        return depth, length
102 层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

方法一:两个数组实现

class Solution(object):
    def levelOrder(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if root is None:return []
        quece, result = [root], []
        while quece:                            
            tmp_res, tmp_que = [], [] 
            while quece:
                node = quece.pop(0)
                tmp_res.append(node.val)
                if node.left:tmp_que.append(node.left)
                if node.right:tmp_que.append(node.right)
            result.append(tmp_res)
            quece = tmp_que                                 
        return result

方法二:一个数组实现,用变量确定每层需要处理的子节点数即可正常插入数组;

class Solution(object):
    def levelOrder(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if root is None:return []
        quece, result = [root], []
        while quece:     
            length = len(quece)                       
            tmp_res = [] 
            for i in range(length):
                node = quece.pop(0)
                tmp_res.append(node.val)
                if node.left:quece.append(node.left)
                if node.right:quece.append(node.right)
            result.append(tmp_res)                                
        return result
108 将有序数组转换为二叉搜索树

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵平衡二叉搜索树。

针对平衡,同时添加左子树和右子树;针对搜索,将数组确定父节点后进行二分;

递归实现

class Solution(object):
    def sortedArrayToBST(self, nums):
        """
        :type nums: List[int]
        :rtype: TreeNode
        """

        def balanceTree(left, right):
            if left > right: return None
            mid = (left+right)//2
            root = TreeNode(nums[mid])
            root.left = balanceTree(left, mid-1)
            root.right = balanceTree(mid+1, right)

        left, right = 0, len(nums)-1
        return balanceTree(left, right)
98 验证二叉搜索树

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

方法一:验证:左子节点值<父节点值<右子节点值   不够准确

在验证10的右子树时,首先所有值要大于10,即需要记录左右子树的不同边界值(左子树-上界  右子树-下界)

对于节点6来说,先在右子树确定下界为10,再在左子树确定上界为15,而6不属于这个区间;

class Solution(object):
    def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        
        def isBST(node, low, up):
            if node is None:return True
            if node.val<=low or node.val>=up: return False
            return isBST(node.left,low,node.val) and isBST(node.right,node.val,up)
        
        return isBST(root, -2**31-1, 2**31)   # 题目范围的边界值

方法二:利用"二叉搜索树的中序遍历一定升序排列"性质;

              在构建中序遍历数组的同时可以进行升序比较;

230 二叉搜索树中第K小的元素

给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 个最小元素(从 1 开始计数)。

利用"二叉搜索树的中序遍历一定升序排列"性质;构建中序遍历数组后直接取出第k个值即可;不构建中序遍历数组的话也可以选择对k处理(在需要插入值的位置将k减一,k归零时对应输出);

class Solution(object):
    def kthSmallest(self, root, k):
        """
        :type root: TreeNode
        :type k: int
        :rtype: int
        """
        stack = []
        result = []
        while root or stack:
            while root:
                stack.append(root)
                root = root.left
            root = stack.pop()
            result.append(root.val)
            root = root.right
        return result[k-1]

class Solution:
    def kthSmallest(self, root, k):
        stack = []
        while root or stack:
            while root:
                stack.append(root)
                root = root.left
            root = stack.pop()
            k -= 1
            if k == 0: return root.val
            root = root.right
199 二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

返回层序遍历数组每层的最后一个值;

class Solution(object):
    def levelOrder(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if root is None:return []
        quece, result = [root], []
        while quece:     
            length = len(quece)                       
            tmp_res = [] 
            for i in range(length):
                node = quece.pop(0)
                tmp_res.append(node.val)    
                # if i == length-1: result.append(node.val) 
                if node.left:quece.append(node.left)
                if node.right:quece.append(node.right)
            result.append(tmp_res[-1])                                
        return result
114. 二叉树展开为链表

给你二叉树的根结点 root ,请你将它展开为一个单链表:

  • 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。
  • 展开后的单链表应该与二叉树 先序遍历 顺序相同。

方法一:颜色标记法:出栈要求中-前-后,入栈则是右-前-中

需要创建虚拟链表头结点;

class Solution(object):
    def flatten(self, root):
        """
        :type root: TreeNode
        :rtype: None Do not return anything, modify root in-place instead.
        """
        white, black = 0, 1
        stack = [(white, root)]
        head = TreeNode(0)
        pre_node = head
        while stack:
            color, node = stack.pop()
            if color == white:
                if node.right:stack.append((white, node.right))
                if node.left:stack.append((white, node.left))
                stack.append((black, node))
            else:
                node.left = None
                pre_node.right = node
                pre_node = node
        return head.right

方法二:找到链表的前置节点

对于当前节点,需要将其左子树的根节点移到右侧才能满足链表要求,而其右子树的根节点在链表中需要接在左子树最右结点之后。

class Solution(object):
    def flatten(self, root):
        """
        :type root: TreeNode
        :rtype: None Do not return anything, modify root in-place instead.
        """
        node = root
        while node:
            if node.left:
                left_node = left_last_node = node.left
                while left_last_node.right:
                    left_last_node = left_last_node.right
                left_last_node.right = node.right
                node.left = None
                node.right = left_node
            node = node.right
        return root
105 从前序与中序遍历序列构造二叉树

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

前序遍历:中-左-右

中序遍历:左-中-右

前序遍历的第一个元素为根节点,在中序遍历序列找到根节点后就能将元素二分为左子树元素和右子树元素,再在前序遍历序列中找到左子树的根节点和右子树的根节点,...

class Solution(object):
    def buildTree(self, preorder, inorder):
        """
        :type preorder: List[int]
        :type inorder: List[int]
        :rtype: TreeNode
        """
        
        def bulidThree(preorder, inorder):
            if preorder:
                root = TreeNode(preorder[0])
                idx = inorder.index(preorder[0])

                inorder_left = inorder[:idx]
                inorder_right = inorder[idx+1:]

                preorder_left = preorder[1:idx+1]
                preorder_right = preorder[idx+1:]

                root.left = bulidThree(preorder_left, inorder_left)
                root.right = bulidThree(preorder_right, inorder_right)
                return root
            else:return
        
        return bulidThree(preorder, inorder)

每次查找根节点坐标会造成时间浪费,可以用hashmap存储(空间换时间)

437 路径总和III

给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。

统计从根节点出发到每个子节点的数值和,用不同节点的数值和做差得到截选的路径(类似前缀和想法)

需要在退出当前节点时更新前缀和(保证路径方向向下)

class Solution(object):
    def pathSum(self, root, targetSum):
        """
        :type root: TreeNode
        :type targetSum: int
        :rtype: int
        """
        global out
        cur_sum, out = 0, 0
        hash = {0:1}             # 初始化,不然根节点与目标值相等时只能插入hash

        def partSum(root, targetSum, hash, cur_sum):
            if root is None: return 0

            global out

            cur_sum += root.val

            if targetSum - cur_sum in hash: 
                out += hash[targetSum-cur_sum]

            if cur_sum in hash:hash[cur_sum] += 1      # 有正有负,会出现重复的前缀和
            else:hash[cur_sum] = 1

            partSum(root.left, targetSum, hash, cur_sum)
            partSum(root.right, targetSum, hash, cur_sum)

            hash[cur_sum] -= 1
            cur_sum -= root.val
        
        partSum(root, targetSum, hash, cur_sum)
        
        return out
236 二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

对于当前节点,若能从其左子树中找到p/q并从其右子树中找到q/p,则该节点为最近公共祖先节点;

若左侧无p/q,则pq均在右子树,将当前节点切换到当前右子节点;

终止条件:切换到叶子节点或找到p/q;

class Solution(object):
    def lowestCommonAncestor(self, root, p, q):
        """
        :type root: TreeNode
        :type p: TreeNode
        :type q: TreeNode
        :rtype: TreeNode
        """
        if root==p or root==q or root==None: return root
        
        left=self.lowestCommonAncestor(root.left,p,q)
        right=self.lowestCommonAncestor(root.right,p,q)
        
        if left and right:return root
        if left and right==None:return left
        if right and left==None:return right
124 二叉树的最大路径和

二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。路径和 是路径中各节点值的总和。给你一个二叉树的根节点 root ,返回其 最大路径和 。

和543相似的思路,只是不再记录深度而是路径和;

class Solution(object):
    def maxPathSum(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        global max_sum 
        max_sum = -1001     # 题目给出的节点的值的下界
        def partPathSum(root):
            if root is None:return 0

            left = partPathSum(root.left)
            left = max(left, 0)                # 除去负值
            right = partPathSum(root.right)
            right = max(right, 0)

            global max_sum
            max_sum = max(max_sum, root.val+left+right)

            return root.val+max(left, right)
        
        partPathSum(root)
        return max_sum

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/490670.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue3+threejs新手从零开发卡牌游戏(十五):创建对方场地和对方卡组

首先创建对方场地&#xff0c;game/site/p2.vue和p1.vue代码一样&#xff0c;注意把里面的命名“己方”修改成“对方”&#xff0c;game/site/index.vue代码如下&#xff0c;用rotateZ翻转一下即可得到镜像的对方场地&#xff1a; // 添加战域plane const addSitePlane () >…

Leetcode 76 最小覆盖子串 java版

官网链接&#xff1a; . - 力扣&#xff08;LeetCode&#xff09; 1. 问题&#xff1a; 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串&#xff0c;则返回空字符串 "" 。 注意&#xff1a; 对于 …

【项目管理——时间管理】【自用笔记】

1 项目时间管理&#xff08;进度管理&#xff09;概述 过程&#xff1a;&#xff08;2—6&#xff09;为规划过程组&#xff0c;7为监控过程组 题目定义&#xff1a;项目时间管理又称为进度管理&#xff0c;是指确保项目按时完成所需的过程。目标&#xff1a;时间管理的主要目标…

FlyControls 是 THREE.js 中用于实现飞行控制的类,它用于控制摄像机在三维空间中的飞行。

demo演示地址 FlyControls 是 THREE.js 中用于实现飞行控制的类&#xff0c;它用于控制摄像机在三维空间中的飞行。 入参&#xff1a; object&#xff1a;摄像机对象&#xff0c;即要控制的摄像机。domElement&#xff1a;用于接收用户输入事件的 HTML 元素&#xff0c;通常…

蓝桥杯刷题8

1. 世纪末的星期 import java.util.Calendar; public class Main {public static void main(String[] args) {Calendar calendar Calendar.getInstance();for(int year 1999;year<100000;year100){calendar.set(Calendar.YEAR,year);calendar.set(Calendar.MONTH,11);cale…

力扣hot100:207. 课程表

这是一道拓扑排序问题&#xff0c;也可以使用DFS判断图中是否存在环。详情请见&#xff1a;官方的BFS算法请忽略&#xff0c;BFS将问题的实际意义给模糊了&#xff0c;不如用普通拓扑排序思想。 数据结构&#xff1a;图的拓扑排序与关键路径 拓扑排序&#xff1a; class Sol…

手撕算法-三数之和

描述 分析 排序双指针直接看代码。 代码 public static List<List<Integer>> threeSum(int[] nums) {Arrays.sort(nums);List<List<Integer>> res new ArrayList<>();for(int k 0; k < nums.length - 2; k){if(nums[k] > 0) break; …

通讯录管理系统实现(C++版本)

1.菜单栏的设置 &#xff08;1&#xff09;我么自定义了一个showmenu函数&#xff0c;用来打印输出我们的菜单栏&#xff1b; &#xff08;2&#xff09;菜单栏里面设置一些我们的通讯录里面需要用到的功能&#xff0c;例如增加联系人&#xff0c;删除联系人等等 2.退出功能…

【Python系列】Python 中 YAML 文件与字典合并的实用技巧

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

MySQL数据库------------探索高级SQL查询语句

目录 一、常用查询 1.1按关键字排序 1.2简单的select条件查询(where) 二、排序 2.1升序排列 2.2降序排序 三、order by 查询结果排序 ①order by还可以结合where进行条件过滤&#xff0c;筛选地址是哪里的学生按分数降序排列 ②查询学生信息先按hobbyid降序排列&#…

面试官问我 ,try catch 应该在 for 循环里面还是外面?

首先 &#xff0c; 话说在前头&#xff0c; 没有什么 在里面 好 和在外面好 或者 不好的 一说。 本篇文章内容&#xff1a; 使用场景 性能分析 个人看法 1. 使用场景 为什么要把 使用场景 摆在第一个 &#xff1f; 因为本身try catch 放在 for循环 外面 和里面 &#…

(一)whatsapp 语音通话基本流程

经过了一整年的开发测试&#xff0c;终于将whatsapp 语音通话完成&#xff0c;期间主要参考webrtc的源码来实现.下面简要说一下大致的步骤 XMPP 协商 发起或者接受语音通话第一步是发起XMPP 协商&#xff0c;这个协商过程非常重要。下面是协商一个包 <call toxxxs.whatsap…

2024 年广西职业院校技能大赛高职组《云计算应用》赛项赛题第 4 套

#需要资源或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; #需要资源或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; #需要资源或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; 某企业根据自身业务需求&…

背包DP模板

01背包 01背包-1 #include <bits/stdc.h> using namespace std;const int N 1e5 10; int n, m, f[N][N], v[N], w[N];int main() {cin >> n >> m;for (int i 1; i < n; i) {cin >> v[i] >> w[i];}for (int i 1; i < n; i) {for (int…

构建多语言数字资产交易平台和秒合约系统:从概念到实现

多语言交易所开发定制秒合约平台币数字所网站制作一条龙搭建 第一步&#xff1a;需求分析 在开始搭建多语言交易所和秒合约平台之前&#xff0c;需要进行详细的需求分析&#xff0c;包括以下几个方面&#xff1a; 功能需求&#xff1a;确定交易所需要提供的功能&#xff0c;包…

要创建企业百度百科,需要注意以下技巧和原则。

&#xfffd;&#xfffd;&#xfffd;词条内容技巧 词条排版必须美观&#xff0c;内容分段&#xff0c;然后制作副标题。例如&#xff0c;一个企业的名称分为小标题&#xff0c;如企业介绍、企业文化、企业发展、企业历史和企业新闻。这不仅可以给读者一个良好的阅读&#xf…

Learn OpenGL 30 SSAO

SSAO 我们已经在前面的基础教程中简单介绍到了这部分内容&#xff1a;环境光照(Ambient Lighting)。环境光照是我们加入场景总体光照中的一个固定光照常量&#xff0c;它被用来模拟光的散射(Scattering)。在现实中&#xff0c;光线会以任意方向散射&#xff0c;它的强度是会一…

python 第一次作业

因为笔者有一些 c/c 语言的基础&#xff0c;所以应该学 python 会稍微简单一些 格式化输出的时候&#xff0c;保留2位小数的格式是 # 假设输出 a &#xff0c;并且 a 保留 2 位小数 print(%.2f%a)输入 输入的时候所有的输入都是字符串类型&#xff0c;我们需要进行类型转换 …

RHCE- 4-Web服务器(2)

基于https协议的静态网站 概念解释 超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息。 HTTP协议以明文方式发送内容&#xff0c;不提供任何方式的数据加密&#xff0c;如果攻击者截取了Web浏览器和网站服务器之间的传输报文&#xff0c;就可以直接读懂其中…

应用层协议 - HTTP

文章目录 目录 文章目录 前言 1 . 应用层概要 2. WWW 2.1 互联网的蓬勃发展 2.2 WWW基本概念 2.3 URI 3 . HTTP 3.1 工作过程 3.2 HTTP协议格式 3.3 HTTP请求 3.3.1 URL基本格式 3.3.2 认识方法 get方法 post方法 其他方法 3.3.2 认识请求报头 3.3.3 认识请…