目标检测中的mAP计算原理和源码实现

简介

在目标检测任务中,mAP(mean Average Precision,平均精度均值)是一个非常重要的评价指标,用于衡量模型在多个类别上的平均性能。它综合考虑了模型在不同召回率下的精确率,能够全面反映模型在检测任务中的表现。
作用
综合性评估:mAP能够综合考虑模型在不同召回率下的精确率,避免了单一指标(如准确率或召回率)可能带来的片面性。
多类别比较:对于多类别的目标检测任务,mAP可以计算每个类别的AP,然后取平均值得到全局的mAP,从而方便比较模型在不同类别上的性能。
模型选择和调优:通过比较不同模型或不同参数设置下的mAP值,可以选择性能更优的模型或确定最佳的参数配置。
计算方法
计算每个类别的AP:
对于每个类别,首先根据模型输出的预测框和真实的标注框计算交并比(IOU)。
根据设定的IOU阈值(通常为0.5),将预测框分为真正例(TP)、假正例(FP)和假反例(FN)。
对于每个预测框,根据当前的TP和FP数量计算精确率(Precision)和召回率(Recall)。
绘制该类别的PR曲线,即Precision随Recall变化的曲线。
计算PR曲线下方的面积,得到该类别的AP值。这通常可以通过插值法实现,如11点插值法,即在Recall坐标轴上选择11个点(如0, 0.1, 0.2, …, 1),然后计算这些点对应的Precision的平均值作为AP的近似值。
计算全局的mAP:
对于所有类别,分别计算得到各自的AP值。
将所有类别的AP值取平均值,得到全局的mAP值。
需要注意的是,mAP的计算过程可能因使用的数据集和评估标准而有所不同。例如,COCO数据集和PASCAL VOC数据集在计算mAP时可能采用不同的IOU阈值或插值方法。因此,在实际应用中,需要根据具体的数据集和评估要求来确定mAP的计算方法。

实现过程

假定我的输入为3D的目标检测的pred_boxes和gt_boxes

image_idx cls_id x y z l w h yaw score(for pred_boxes)
pred_boxes = py.array([[0, 1, 13, 13, 0, 6, 6, 2, 0, 0.9],
[0, 0, 35, 30, 0, 10, 8, 2, 0, 0.9],
[1, 0, 12, 30, 0, 6, 9, 2, 0, 0.5]])
gt_boxes = py.array([[0, 1, 10, 10, 0, 6, 6, 2, 0],
[0, 0, 30, 30, 0, 10, 8, 2, 0],
[0, 0, 10, 30, 0, 6, 9, 2, 0]])

可视化一下image_idx=0的boxes:
在这里插入图片描述
在每个类别中提取每个样本的这个类别的pred_boxes和gt_boxes,并计算iou值,根据iou阈值划分tp(正确检测)和fp(误检).

over_laps = iou(pred_boxes=pred_boxes_cls_img[:, [2, 3, 5, 6]],
                                    gt_boxes=gt_boxes_cls_img[:, [2, 3, 5, 6]])
corr_gts = np.argmax(over_laps, axis=1)
corr_iou = np.max(over_laps, axis=1)
visited_gt = []
for id, pred_box in enumerate(pred_boxes_cls_img):
    if corr_iou[id] >= iou_threshold and corr_gts[id] not in visited_gt:
         visited_gt.append(corr_gts[id])  # if pred got gt, the gt should be ignore
         fp_or_tp.append(1)
    else:
         fp_or_tp.append(0)

统计所有样本的pred_boxes的tp/fp类型及其score,安照score降序排序.

scores = pred_boxes_cls[:, -1]
index = np.argsort(-scores, )
# sort fp_or_tp by decending order of scores
fp_or_tp = fp_or_tp[index]

根据score列表依次选择有效的pred_boxes,计算precision=tp/(tp+fp)和recall=tp/gt_boxes.size().
precision和recall列表形成pr曲线,计算pr曲线面积即可.

# 根据>=score的是有效pred,有效pred中,0是f,1是检测到了目标, 1的数量除以总的有效pred就precious
# 1的数量除以真值数量就是recall
tp_num_list = np.cumsum(fp_or_tp)
pred_num_list = np.cumsum(np.ones_like(fp_or_tp))
precision_array = tp_num_list / pred_num_list
recall_array = tp_num_list / tp_and_tn
ap = compute_ap(recall_array, precision_array, class_name)

注意求pr曲线面积时,横坐标(长)要是recall,而不能是用score求平均precision.

思考下:
pr曲线会不会出现左低右高的情况?是有的,当fp的score较高时候就会出现这个问题.比如score最高的第一个就是fp.那么这时recall很小时,precision为0.
解决方法:recall_list和precision_list的首尾补上(0,1)或者(1,0),然后单调性处理
在这里插入图片描述

再分析下:score降序,recall肯定是递增的,但是precision不一定是递减,因此需要使得它单调,具体操作:

    for i in range(len(precision_array)-1, 0,-1):
        precision_array[i-1] = np.max(precision_array[i-1], precision_array[i])

参考:b站视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/485999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VMware 调整产品方案,该跟随还是撤退?全面评估不同用户应对策略

本文针对 VMware 调整后的产品组合进行深入分析,并根据不同用户使用情况给出详细的应对策略,干货满满,建议收藏阅读!重点内容包括: VMware 产品变化梳理不同用户如何选择应对策略:评估角度与应对思路梳理延…

ChatGPT 对 ELT的理解

本文主要内容来自 ChatGPT 4.0 到底什么是 ETL?在数据库内部,把数据从 ODS 层加工成 DWD,再加工成 DWS,这个过程和 ETL 的关系是什么?带着这些问题,我问了一下 ChatGPT,总结如下。 数据在两个数…

下载最新VMware,社区版本(免费)

VMware - Delivering a Digital Foundation For BusinessesRun any app on any cloud on any device with a digital foundation built on VMware solutions for modern apps, multi-cloud, digital workspace, security & networking.https://www.vmware.com/ 官网地址

【SpringBoot】了解简单原理 Bean管理 配置优先级

文章目录 一、配置优先级1.1 命令行设置端口号1.2 打包后修改端口号1.3 优先级 小结 二、Bean的管理2.1 获取Bean2.2 Bean作用域2.3 第三方Bean 三、剖析Springboot的底层原理3.1 起步依赖3.2 自动配置3.2.1 第三方类装配3.2.2 原理分析 总结Web后端开发总结:源码跟…

笔记本电脑与服务器首选:PW1605可编程电流限制开关,稳定可靠新标准

一般描述 PW1605 是一款电流限制开关,具有可编程输入过压保护和输出电压箝位功能。集成保护 N 沟道 FET 具有极低的 RDS(ON) 功能,PW1605有助于降低正常工作期间的功率损耗。可编程软启动时间控制启动期间输出电压的压摆率。独立的…

python实现常见统计量与统计分布

一. 基本概念 1. 总体 一个统计问题研究对象的全体称为总体,构成总体的每个成员称为个体。 2. 样本 一般由于总体的数量是非常巨大的,不可能对全部总体进行研究,通常会对总体进行抽样进行研究。 从总体中按一定规则抽出的一部分个体称为…

UE4_官方动画内容示例1.2_动画蓝图——使用蓝图告知Actor播放动画

展示了两个示例:在其中一个示例中,使用蓝图告知Actor播放动画,在另外一个示例中,展示了告知Actor播放动画的动画蓝图(例如,此示例展示了如何将变量从蓝图传递给动画蓝图,并演示了如何将现有姿势…

.NET高级面试指南专题二十三【 B+ 树作为索引有什么优势】

B 树作为索引有许多优势,这些优势使其成为许多数据库管理系统中首选的索引结构之一。以下是 B 树作为索引的一些主要优势: 高效的查询性能:B 树是一种平衡树结构,具有良好的平衡性和高度平衡的性质,这使得在 B 树上进行…

leetcode刷题日记-滑铁卢了家人们(解数独)

问题描述 解题思路 看到这个题,给我的感觉是什么玩意啊!仔细读题之后,真的没想到解题思路。然后看了题解,用到了回溯算法,感觉这个回溯和N皇后的问题差不太多。然后就照着思路尝试理解了一遍,感觉这种题目…

电脑怎么解除安全模式?

安全模式是windows系统中的一种特殊模式,在安全模式可以让系统仅载入最低需求的驱动程序来启动电脑,用户可以在此模式下检测或故障排除。可是一些用户却不知道怎么解除安全模式。下面,极客狗就为大家带来电脑怎么解除安全模式的方法吧。 解除安全模式的方法: 1、 首先,在安…

Python使用flask框架与前端建立websocket链接,并进行数据交互

Python使用flask框架与前端建立websocket链接,并进行数据交互 后端采用的框架为flask,前端用的flask自带的html编写,实现的功能为:前后端建立websocket链接并进行数据交互 一、编写一个flask后端服务 常规创建方式就可以,创建一个flask服务。声明一个websocket实例,以we…

详解mysql安装与配置,及Mac中常见的安装问题

目录 1 数据库介绍 什么是数据库 数据库分类 2 MySQL服务器安装 2.1 Windows绿色安装 2.2 Windows中重装MySQL 3 Mac中常见的安装问题 4 客户端连接MySQL服务器 5 SQL分类 1 数据库介绍 什么是数据库 存储数据用文件就可以了,为什么还要弄个数据库? 文件…

文件上传一-WEB攻防-PHP应用文件上传函数缺陷条件竞争二次渲染黑白名单JS绕过9

演示案例: PHP-原生态-文件上传-前后端验证PHP-原生态-文件上传-类型文件头验证PHP-原生态-文件上传-后缀黑白名单验证PHP-原生态-文件上传-解析配置&二次渲染PHP-原生态-文件上传-逻辑缺陷&函数缺陷 #学习前必读: 1、课前一定要明白&#xff1a…

【教程】高效数据加密混淆方法及实现简介

背景 在需要对数据进行传输或者表达时,通常要求数据加密的安全级别不高,但希望加解密时间复杂度尽可能低。这时使用传统的对称加密(如3DES、AES)或非对称加密(如RSA、ECC)显然不太适合。因为加密的安全级别…

PSO-CNN-BiLSTM多输入时序预测|粒子群优化算法-卷积-双向长短期神经网络时序预测|Matlab

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译&am…

Linux manim安装

ERROR No package ‘pangocairo’ found Getting requirements to build wheel ... errorerror: subprocess-exited-with-error Getting requirements to build wheel did not run successfully.│ exit code: 1╰─> [31 lines of output]Package pangocairo was not fou…

青少年扁平足也需要手术?家长可千万不要忽视!

近日,在门诊遇到一位年轻妈妈带着孩子来看诊,反应孩子从一年前体育活动时就莫名喊双脚疼,长时间走路或者站立疼痛会加重,休息了就好些,担心孩子脚是不是有什么问题。医生听了先给孩子做了查体,后又让孩子脱…

基于ArUco码测量蓝色区域长度

基于ArUco码测量蓝色区域长度 ,并把各个参数画在图上

【郭林保大夫】——这些事情做到了,想患上帕金森都难!

郭林保大夫说:帕金森病的发病原因尚不完全清楚,但可能与多种因素有关,包括遗传因素、环境因素、神经系统老化等。具体病因可能是这些因素相互作用的结果。病情后期,严重程度会因个体差异而异。一些患者可能出现严重的运动障碍&…

JVM系列之JVM体系(一)

一、前言 为什么要学习了解Java虚拟机 1.我们需要更加清楚的了解Java底层是如何运作的,有利于我们更深刻的学习好Java。 2.对我们调试错误提供很宝贵的经验。 3.这是合格的Java程序必须要了解的内容。 基于此,我打算出一个Java虚拟机的系列&#xf…