卷积神经网络-卷积层

卷积神经网络-卷积层

      • 1多层感知机(MLP)
      • 2卷积神经网络(CNN)
      • 3MLP和CNN关系与区别
      • 4仍然有人使用MLP的原因:
      • 5MLP的局限性:
      • MLP的应用领域:
      • 总结:
      • 6全连接到卷积
        • 全连接层 vs 卷积层
          • 结构差异
          • 应用场景
        • 全连接层和卷积层的关系
        • 示例:使用Python和TensorFlow创建卷积层和全连接层
        • 总结
      • 7 卷积层
          • 2填充和步幅
            • 1. 有效填充(Valid Padding)
            • 2. 相同填充(Same Padding)

多层感知机(Multilayer Perceptron, MLP)和卷积神经网络(Convolutional Neural Network, CNN)都是深度学习中常用的神经网络结构,但它们在结构和应用上有所不同。以下是它们之间的关系和区别:

1多层感知机(MLP)

  1. 结构:MLP是一个全连接(或称为密集连接)的前馈神经网络,由一个或多个隐藏层组成。每一层的神经元都与上一层的所有神经元相连接。

  2. 特点

    • 适用于处理结构化数据,如表格数据。
    • 激活函数常用的有ReLU、Sigmoid、Tanh等。
    • 没有考虑数据的空间结构或局部模式。
  3. 应用

    • 分类问题
    • 回归问题
    • 强化学习等

2卷积神经网络(CNN)

  1. 结构:CNN主要由卷积层(Convolutional Layer)、池化层(Pooling Layer)、全连接层(Fully Connected Layer)等组成。

    • 卷积层:用于检测输入数据中的局部模式或特征。
    • 池化层:用于降低特征映射的空间尺寸,同时保留主要的信息。
    • 全连接层:用于进行分类或回归任务。
  2. 特点

    • 适用于处理图像、视频等具有空间结构的数据。
    • 利用局部连接和权值共享的方式减少参数数量。
    • 通过卷积和池化操作,能够提取数据的局部特征。
  3. 应用

    • 图像分类
    • 物体检测
    • 图像分割
    • 人脸识别等

3MLP和CNN关系与区别

  1. 应用领域:MLP主要用于处理结构化数据,而CNN主要用于处理具有空间结构的数据,特别是图像数据。

  2. 参数数量:由于CNN利用了权值共享和局部连接,其参数数量通常比MLP少,这使得CNN更适合处理大规模的图像数据。

  3. 特征提取能力:CNN具有良好的特征提取能力,能够自动学习数据中的局部特征。而MLP更依赖于手动设计的特征或特征工程。

  4. 结构:CNN通常包含卷积层和池化层,而MLP仅包含全连接层。

总的来说,MLP和CNN都是深度学习的基础模型,但它们适用于不同类型的数据和任务。在处理图像等具有空间结构的数据时,CNN通常比MLP表现得更好,而在处理结构化数据时,MLP可能更为合适。在实际应用中,两者也可以结合使用,例如使用CNN进行特征提取,然后使用MLP进行分类或回归。

多层感知机(Multilayer Perceptron, MLP)在深度学习的发展历程中确实起到了重要的作用,并且在一些任务上仍然有着广泛的应用。以下是关于MLP的一些观点和应用情况:

4仍然有人使用MLP的原因:

  1. 处理结构化数据:MLP主要适用于处理结构化数据,例如表格数据,它在一些分类和回归任务中仍然表现得很好。

  2. 简单且有效:与复杂的深度学习模型相比,MLP具有简单的结构和训练过程,对于某些简单任务而言,MLP可能更容易训练和实现。

  3. 特定任务和应用:在某些特定的应用场景和任务中,MLP可能是一个合适的选择,例如异常检测、金融预测等。

5MLP的局限性:

  1. 处理复杂数据:MLP在处理图像、语音和文本等复杂和高维数据上的表现不如卷积神经网络(CNN)和循环神经网络(RNN)。

  2. 需要手动特征工程:与CNN和RNN等能够自动学习特征的模型相比,MLP更依赖于手动设计的特征或特征工程。

  3. 过拟合问题:在处理高维数据时,由于MLP的参数数量相对较多,容易导致模型过拟合。

MLP的应用领域:

  1. 金融领域:如股价预测、信用评分等。
  2. 医疗领域:如疾病预测、医疗图像分析等。
  3. 工业领域:如故障检测、质量控制等。
  4. 推荐系统:如商品推荐、电影推荐等。

总结:

虽然深度学习领域已经涌现出许多新的模型和技术,但多层感知机(MLP)仍然在某些特定的应用和场景中保持其重要地位。选择使用MLP还是其他深度学习模型取决于具体的任务需求、数据类型和应用场景。在实际应用中,人们会根据问题的复杂性和数据的性质来选择最合适的模型。

6全连接到卷积

卷积层是特殊的全连接层
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
全连接层(Fully Connected, FC)和卷积层(Convolutional Layer, Conv)是深度学习中两种常用的神经网络层,它们在结构和应用场景上有一些明显的差异。下面我们来探讨全连接层和卷积层之间的关系和区别。

全连接层 vs 卷积层
结构差异
  1. 连接方式

    • 全连接层:每个节点都与下一层的每个节点连接,形成一个全连接的网络。
    • 卷积层:使用卷积核在输入数据上进行滑动操作,从而提取局部特征。
  2. 参数数量

    • 全连接层:参数数量较多,与输入和输出的维度有关。
    • 卷积层:参数数量较少,主要由卷积核的大小和数量决定。
应用场景
  • 全连接层:常用于分类任务的最后几层,如全连接层+Softmax输出层。
  • 卷积层:主要用于处理具有空间结构的数据,如图像数据,能够捕获局部特征。
全连接层和卷积层的关系
  1. 特征提取与表示

    • 全连接层:主要用于高级特征的组合和抽象。
    • 卷积层:主要用于低级和中级特征的提取。
  2. 结合使用

    • 在深度学习模型中,通常会先使用卷积层提取特征,然后再使用全连接层进行分类或回归。这种结合使用的方式可以充分利用卷积层提取的特征,并通过全连接层进行最终的决策。
示例:使用Python和TensorFlow创建卷积层和全连接层
import tensorflow as tf

# 创建卷积层
conv_layer = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))

# 创建全连接层
fc_layer = tf.keras.layers.Dense(128, activation='relu')

# 定义输入数据(模拟28x28的灰度图像)
input_data = tf.random.normal([1, 28, 28, 1])

# 卷积层前向传播
conv_output = conv_layer(input_data)

# 全连接层前向传播
# 需要将卷积层的输出展平
flatten_output = tf.keras.layers.Flatten()(conv_output)
fc_output = fc_layer(flatten_output)

# 打印输出形状
print("Conv output shape:", conv_output.shape)
print("FC output shape:", fc_output.shape)

在这个示例中,我们首先创建了一个卷积层和一个全连接层。然后,我们使用一个随机生成的28x28的灰度图像作为输入数据,通过卷积层和全连接层进行前向传播,并打印两层的输出形状。

总结
  • 全连接层卷积层在深度学习中各有其独特的应用和特性。
  • 它们可以结合使用,通过卷积层提取特征,然后通过全连接层进行分类或回归,构建有效的深度学习模型。

7 卷积层

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2填充和步幅

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在卷积神经网络(Convolutional Neural Networks, CNNs)中,填充(Padding)是一个常用的技术,用于调整卷积操作后输出特征图(feature map)的尺寸。填充主要有两种类型:有效填充(Valid Padding)和相同填充(Same Padding)。

1. 有效填充(Valid Padding)

在有效填充中,不进行任何填充。这意味着卷积核只在输入数据上进行滑动,不在输入数据的边缘添加任何额外的值。

2. 相同填充(Same Padding)

在相同填充中,我们在输入数据的周围均匀地添加填充,以使输出特征图的尺寸与输入特征图的尺寸相同。

通过使用填充,我们可以控制卷积层的输出尺寸,这对于设计卷积神经网络架构非常有用,特别是在需要保留输入尺寸的信息时。

在这里插入图片描述
在这里插入图片描述
在卷积神经网络(Convolutional Neural Networks, CNNs)中,步幅(Stride)是另一个重要的超参数,它定义了卷积核在输入数据上滑动的距离。

步幅定义了卷积核每次在输入数据上移动的像素数量。步幅为1意味着卷积核每次移动一个像素;步幅为2意味着卷积核每次移动两个像素,以此类推。

通过调整步幅,我们可以进一步控制卷积层的输出尺寸。步幅大于1的卷积通常可以减少特征图的尺寸,这在需要减少模型参数和计算量时非常有用。

注意
步幅与填充的关系:步幅和填充可以共同影响输出尺寸。在实际应用中,通常首先选择填充方式(有效填充或相同填充),然后根据需要的输出尺寸来调整步幅。

步幅的选择:步幅的选择需要根据具体任务和模型设计来确定。较大的步幅通常可以减少计算量,但可能会丢失一些空间信息;较小的步幅可以保留更多的空间信息,但会增加计算量。

通过填充和步幅的调整,我们可以更加灵活地设计卷积神经网络,以适应不同的任务和数据特性。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/485058.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(一)基于IDEA的JAVA基础7

关系运算符 运算符 含义 范例 结果 等于 12 false &#xff01; 不等于 1&#xff01;2 true > 大于 1>2 false < 小于 …

使用html做一个2048小游戏

下载地址: https://pan.xunlei.com/s/VNtiF13HxmmE4gglflvS1BUhA1?pwdvjrt# 提取码&#xff1a;vjrt”

Springboot家乡特色推荐系统

目录 背景 技术简介 系统简介 界面预览 背景 在当今这个网络迅猛发展的时代&#xff0c;计算机技术已经广泛应用于我们生活的每个角落&#xff0c;互联网在经济和日常生活等多个方面扮演着至关重要的角色&#xff0c;它已成为人们分享资源和快速交流信息的关键平台。在中国…

备战蓝桥杯Day35 - 动态规划 - 01背包问题

问题描述 隐含前提&#xff1a; 1.物体是不可分的&#xff0c;要么装&#xff0c;要么不装&#xff0c;不能只装一部分。 2.物体顶多使用一次。 动态规划思路 我在b站上看的闫氏dp分析大法的视频&#xff0c;他对dp问题做了总结归纳。 从集合的角度分析dp问题。求出有限集…

基于netcore的乡镇土地竞拍系统前端vue+mysql数据库

基于netcore的乡镇土地竞拍系统前端vuemysql数据库 本系统将采用采用Visual Studio2019版本为该系统的开发工具&#xff0c;Net 语言进行开发。系统从选题开始&#xff0c;共经历了搜集选题背景信息和选题目的及意义的分析&#xff0c;通过对国内外的研究&#xff0c;需求分析的…

nodejs+vue高校洗浴管理系统python-flask-django-php

高校洗浴管理系统采用数据库是MySQL。网站的搭建与开发采用了先进的nodejs进行编写&#xff0c;使用了express框架。该系统从两个对象&#xff1a;由管理员和学生来对系统进行设计构建。主要功能包括&#xff1a;个人信息修改&#xff0c;对学生管理、浴室信息、浴室预约、预约…

Spark Streaming DStream

Spark Streaming DStream DStream 即Discretized Stream&#xff0c;中文叫做离散流&#xff0c;Spark Streaming提供的一种高级抽象&#xff0c;代表了一个持续不断的数据流。 DStream可以通过输入数据源来创建&#xff0c;比如Kafka、Flume&#xff0c;也可以通过对其他DS…

加密技术概述

传输数据时的四个问题 窃听 数字加密 假冒 消息认证或数字签名 篡改 消息认证码或数字签名 事后否认 数字签名 加密技术 将数据变成第三者的计算机无法理解的形式&#xff0c;然后再将其恢复成原本数据的一系列操作就是加密技术。 哈希函数 哈希函数可以把给定的数据转…

jvm底层

逐步细化 静态链接&#xff1a;静态方法(符号引用)替换为内存指针或者句柄直接引用) 动态链接&#xff1a;程序期间将符号引用替换为直接引用 对象头&#xff1a; 指针压缩&#xff1a; -XX:UseCompressedOops 开启指针压缩 减少内存消耗&#xff1b;大指针在主内存 缓存间移…

栅格地图路径规划:基于霸王龙优化算法(Tyrannosaurus optimization,TROA)的机器人路径规划(提供MATLAB代码)

一、机器人路径规划介绍 移动机器人&#xff08;Mobile robot&#xff0c;MR&#xff09;的路径规划是 移动机器人研究的重要分支之&#xff0c;是对其进行控制的基础。根据环境信息的已知程度不同&#xff0c;路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或…

Wireshark TS | DNS 案例分析之外的思考

前言 承接之前一篇《Packet Challenge 之 DNS 案例分析》&#xff0c;在数据包跟踪文件 dnsing.pcapng 中&#xff0c;关于第 4 题&#xff08;What is the largest DNS response time seen in this trace file? &#xff09;的分析过程中曾经碰到一个小问题&#xff0c;主要…

[BT]BUUCTF刷题第6天(3.24)

第6天 Web [极客大挑战 2019]PHP Payload&#xff1a; O:4:"Name":3:{s:14:"%00Name%00username";s:5:"admin";s:14:"%00Name%00password";s:3:"100";}这道题考点是网站源码备份文件泄露和PHP反序列化&#xff0c;有篇介…

【WEEK4】 【DAY5】AJAX - Part Two【English Version】

2024.3.22 Friday Following the previous article 【WEEK4】 【DAY4】AJAX - Part One【English Version】 Contents 8.4. Ajax Asynchronous Data Loading8.4.1. Create User.java8.4.2. Add lombok and jackson support in pom.xml8.4.3. Change Tomcat Settings8.4.4. Mo…

HTML5和CSS3新特性

Html新增属性 1.新增语义化标签 <header>&#xff1a;头部标签 <nav>&#xff1a;导航标签 <article>&#xff1a;内容标签 <section>&#xff1a;定义文档某个区域 <aside>&#xff1a;侧边栏标签 <footer>&#xff1a;尾部标签 2.…

【深度学习】pytorch,MNIST手写数字分类

efficientnet_b0的迁移学习 import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torchvision.datasets import MNIST from torch.utils.data import DataLoader from torchvision import models import matplo…

C语言——sizeof与strlen的对比

一.sizeof 我们在学习操作符的时候&#xff0c;就了解到了sizeof操作符&#xff0c;它的作用是求参数所占内存空间的大小&#xff0c;单位是字节。如果参数是一个类型&#xff0c;那就返回参数所占的字节数。 #include <stdio.h>int main() {int a 10;size_t b sizeo…

【机器学习300问】48、如何绘制ROC曲线?

ROC曲线&#xff08;受试者工作特征曲线&#xff09;是一种用于可视化评估二分类模型性能的指标。特别是在不同阈值情况下模型对正类和负类的区分能力。那么“阈值”到底是个什么呢&#xff1f;ROC曲线中的每一个点到底是什么意思&#xff1f; 一、ROC曲线的绘制【理论】 二分…

LeetCode Python - 72. 编辑距离

目录 题目描述解法运行结果 题目描述 给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1&#xff1a; 输入&#xff1a;word1 “h…

Linux的介绍以及其发展历史

文章目录 前言一、技术是推动社会发展的基本动力1.人为什么能成为万物之长呢&#xff1f;2.人为什么要发明工具&#xff0c;进行进化呢&#xff1f;3.人是如何发明工具的&#xff1f;4.为什么要有不同的岗位和行业&#xff1f; 二、计算机(操作系统)发展的基本脉络1.第一台计算…

Google ScreenAI代表了一款先进的视觉语言模型,专为用户界面(UI)和视觉情境下的语言理解而设计

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…