栅格地图路径规划:基于霸王龙优化算法(Tyrannosaurus optimization,TROA)的机器人路径规划(提供MATLAB代码)

 一、机器人路径规划介绍

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。对于栅格法,当空间增大时,所需存储空间剧增,决策速度下降;而人工势场法容易产生局部最优解问题和死锁现象。随着智能控制技术的发展,出现了如遗传算法算法、粒子群优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法等。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人, 2005, 27(2):5.DOI:10.3321/j.issn:1002-0446.2005.02.008.

[3]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

二、栅格地图环境搭建

首先建立移动机器人工作环境,设移动机器人的工作空间为二维空间(记为RS),工作环境中的障碍物即为机床。在机器人运动过程中,障碍物为静止且大小不发生变化。按栅格法划分RS,移动机器人在栅格间行走。无障碍物的栅格为可行栅格,有障碍物的栅格为不可行栅格。栅格集包含所有栅格。栅格标识有:直角坐标法和序号法。本文采用序号标识法。

在移动机器人工作空间下按从左到右,从上到下的顺序,依次标记为序号1,2,3,···,n,每一个序号代表一个栅格。为了避免移动机器人与障碍物发生碰撞,可以将障碍物膨胀,障碍物在占原有栅格的同时,再占多个栅格,按 个栅格算。这种划分方法简单实用,能够满足环境模型与真实情况相符。从而使移动机器人在路径规划时畅通无阻。令S={1,2,3,···,N}为栅格序号集。根据上述对应关系,可知g(0,0)的序号为1,g(1,0)序号为2,直至g(X,Y)的序号为n。规划起始位置、目标位置均为任意且都属于S(但不在同一栅格内)。

在实际工作环境中,移动机器人工作环境是复杂多变的,且为三维空间。为了便于研究,本文对环境进行简化建模。栅格法是一种常用的环境表示方法,因其简单方便(二维环境),环境建模的复杂性小,因而本文环境建模采用栅格法。在栅格地图中,工作环境被划分为很多栅格,其中包括有障碍物和无障碍的栅格,在仿真程序中用0表示此栅格无障碍物,机器人可以通过此栅格,用1表示栅格有障碍物,机器人无法通过,需选择其他栅格。栅格的尺寸大小可根据工作环境中的障碍物尺寸以及安全距离进行设置。为了实现程序仿真,需要对栅格进行标识,如下图所示,以20x20的栅格环境为例来说明。

如上图所示,白色栅格表示无障碍物的栅格,黑色栅格则表示有障碍物的栅格,在地图中对每个栅格编号,不同序号的栅格在坐标系中的坐标可用下式来表示:

x=mod(Ni/N)-0.5

y=N-ceil(Ni/N)+0.5

其中,mod为取余运算,ceil表示向后取整,Ni是对应栅格的标号,N表示每 列的栅格数量,取栅格中心位置作为栅格在坐标系中的坐标。这样机器人全局路径规划的问题就转变成了利用算法在栅格地图上寻找由起始点到目标点的有序的栅格子集,这些栅格子集的中心连线便是算法寻找的路径。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

三、霸王龙优化算法

霸王龙优化算法(Tyrannosaurus optimization,TROA)由Venkata Satya Durga Manohar Sahu等人于2023年提出,该算法模拟霸王龙的狩猎行为,具有搜索速度快等优势。

参考文献:Venkata Satya Durga Manohar Sahu, Padarbinda Samal, Chinmoy Kumar Panigrahi,”Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems”,e-Prime - Advances in Electrical Engineering, Electronics and Energy,Volume 5,2023,100243,ISSN 2772-6711,https://doi.org/10.1016/j.prime.2023.100243.
                        
原文链接:https://blog.csdn.net/weixin_46204734/article/details/133847832

四、霸王龙优化算法求解机器人路径规划

4.1部分代码

%% 
S = [1 1];   %起点
E = [20 20];  %终点
[ub,dimensions] = size(G);        
dim = dimensions - 2;             
%% 参数设置
Max_iter= 100;    % 最大迭代次数
SearchAgents_no = 50;         % 种群数量
X_min = 1;  
lb=1;
fobj=@(x)fitness(x);
[Best_score,Best_NC,Convergence_curve]=CPO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);

toc
%% 结果分析
global_best = round(Best_NC);
figure(1)
plot(Convergence_curve,'r-','linewidth',2.5)
xlabel('Iteration');
ylabel('Fitness');
legend('CPO')

4.2部分结果

五、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/485043.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Wireshark TS | DNS 案例分析之外的思考

前言 承接之前一篇《Packet Challenge 之 DNS 案例分析》,在数据包跟踪文件 dnsing.pcapng 中,关于第 4 题(What is the largest DNS response time seen in this trace file? )的分析过程中曾经碰到一个小问题,主要…

[BT]BUUCTF刷题第6天(3.24)

第6天 Web [极客大挑战 2019]PHP Payload: O:4:"Name":3:{s:14:"%00Name%00username";s:5:"admin";s:14:"%00Name%00password";s:3:"100";}这道题考点是网站源码备份文件泄露和PHP反序列化,有篇介…

【WEEK4】 【DAY5】AJAX - Part Two【English Version】

2024.3.22 Friday Following the previous article 【WEEK4】 【DAY4】AJAX - Part One【English Version】 Contents 8.4. Ajax Asynchronous Data Loading8.4.1. Create User.java8.4.2. Add lombok and jackson support in pom.xml8.4.3. Change Tomcat Settings8.4.4. Mo…

HTML5和CSS3新特性

Html新增属性 1.新增语义化标签 <header>&#xff1a;头部标签 <nav>&#xff1a;导航标签 <article>&#xff1a;内容标签 <section>&#xff1a;定义文档某个区域 <aside>&#xff1a;侧边栏标签 <footer>&#xff1a;尾部标签 2.…

【深度学习】pytorch,MNIST手写数字分类

efficientnet_b0的迁移学习 import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torchvision.datasets import MNIST from torch.utils.data import DataLoader from torchvision import models import matplo…

C语言——sizeof与strlen的对比

一.sizeof 我们在学习操作符的时候&#xff0c;就了解到了sizeof操作符&#xff0c;它的作用是求参数所占内存空间的大小&#xff0c;单位是字节。如果参数是一个类型&#xff0c;那就返回参数所占的字节数。 #include <stdio.h>int main() {int a 10;size_t b sizeo…

【机器学习300问】48、如何绘制ROC曲线?

ROC曲线&#xff08;受试者工作特征曲线&#xff09;是一种用于可视化评估二分类模型性能的指标。特别是在不同阈值情况下模型对正类和负类的区分能力。那么“阈值”到底是个什么呢&#xff1f;ROC曲线中的每一个点到底是什么意思&#xff1f; 一、ROC曲线的绘制【理论】 二分…

LeetCode Python - 72. 编辑距离

目录 题目描述解法运行结果 题目描述 给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1&#xff1a; 输入&#xff1a;word1 “h…

Linux的介绍以及其发展历史

文章目录 前言一、技术是推动社会发展的基本动力1.人为什么能成为万物之长呢&#xff1f;2.人为什么要发明工具&#xff0c;进行进化呢&#xff1f;3.人是如何发明工具的&#xff1f;4.为什么要有不同的岗位和行业&#xff1f; 二、计算机(操作系统)发展的基本脉络1.第一台计算…

Google ScreenAI代表了一款先进的视觉语言模型,专为用户界面(UI)和视觉情境下的语言理解而设计

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

二次开发Flink-coGroup算子支持迟到数据通过测输出流提取

1.背景 coGroup算子开窗到时间关闭之后&#xff0c;迟到数据无法通过测输出流提取&#xff0c;intervalJoin算子提供了api&#xff0c;因为join算子底层就是coGroup算子&#xff0c;所以Join算子也不行。 flink版本 v1.17.1 2.coGroup算子源码分析 2.1完成的coGroup算子调用流…

QT(C++)-error LNK2038: 检测到“_ITERATOR_DEBUG_LEVEL”的不匹配项: 值“2”不匹配值“0”

1、项目场景&#xff1a; 在VS中采用QT&#xff08;C&#xff09;调试时&#xff0c;出现error LNK2038: 检测到“_ITERATOR_DEBUG_LEVEL”的不匹配项: 值“2”不匹配值“0”错误 2、解决方案&#xff1a; 在“解决方案资源管理器”中选中出现此类BUG的项目&#xff0c;右键-…

jenkins介绍,帮助你从安装到使用jenkins

Jenkins 概述 官网地址&#xff1a;https://www.jenkins.io/zh/ 什么是 Jenkins Jenkins是一款开源 CI&CD 软件&#xff0c;用于自动化各种任务&#xff0c;包括构建、测试和部署软件。它提供了一个易于使用的图形化界面&#xff0c;可以通过配置简单的任务来实现自动化构…

javaSSM游泳馆日常管理系统IDEA开发mysql数据库web结构计算机java编程maven项目

一、源码特点 IDEA开发SSM游泳馆日常管理系统是一套完善的完整企业内部系统&#xff0c;结合SSM框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;MAVEN方式加载&#xff0c;系统具有完整的源代码和…

Vue 3 里的 onMounted 怎么用?

疑问 最近&#xff0c;一直在学习 Vue 3&#xff0c;此前我不懂前端&#xff0c;也没写过 Vue 2&#xff0c;所以是从 0 开始学习 Vue 3 的。很多对普通人不是疑问的&#xff0c;在我这里也会不太清楚。 我在写项目的时候&#xff0c;常见的一种场景是这样的&#xff1a;页面…

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别 目录 分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别分类效果基本介绍模型描述程序设计参考…

基于SSM非遗视域下喀什旅游网站

ssm非遗视域下喀什旅游网站的设计与实现 摘要 我们的生活水平正在不断的提高&#xff0c;然而提高的一个重要的侧面表现就是更加注重我们的娱乐生活。旅行是我们都喜欢的一种娱乐方式&#xff0c;各式各样的旅行经历给我们带来的喜悦也是大不相同的。带来快乐的同时也因为其复…

IntelliJ IDE 插件开发 | (七)PSI 入门及实战(实现 MyBatis 插件的跳转功能)

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门IntelliJ IDE 插件开发 |&#xff08;二&#xff09;UI 界面与数据持久化IntelliJ IDE 插件开发 |&#xff08;三&#xff09;消息通知与事件监听IntelliJ IDE 插件开发 |&#xff08;四&#xff09;来查收…

MongoDB高可用架构涉及常用功能整理

MongoDB高可用架构涉及常用功能整理 1. mongo架构和相关组件1.1. Master-Slave主从模式1.2. Replica Set 副本集模式1.3. Sharding 分片模式 2. Sharding 分片模式2.1. Hashed Sharding方式2.2. Range Sharding方式 3. 事务性4. 疑问和思考4.1. 怎么保证数据的高可靠&#xff1…

常用中间件redis,kafka及其测试方法

常用消息中间件及其测试方法 一、中间件的使用场景引入中间件的目的一般有两个&#xff1a;1、提升性能常用的中间件&#xff1a;1) 高速缓存&#xff1a;redis2) 全文检索&#xff1a;ES3) 存日志&#xff1a;ELK架构4) 流量削峰&#xff1a;kafka 2、提升可用性产品架构中高可…