时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测

时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测(完整源码和数据),单变量时间序列预测,运行环境matlab2023及以上,excel数据,方便替换;
2.评价指标RMSE、MAPE、MAE、MSE、R2等;
3.程序语言为matlab,程序可出预测效果图,误差分析图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

BiTCN-LSTM(双向时间卷积长短期记忆神经网络)是一个结合了时间卷积网络(Temporal Convolutional Networks, TCN)和长短时记忆网络(Long Short-Term Memory, LSTM)的混合模型,专门设计用于处理时间序列预测任务。该模型试图通过结合两种强大的深度学习架构来捕捉时间序列数据中的长期和短期依赖关系。

双向时间卷积网络(Bi-directional TCN):

TCN 使用因果卷积(Causal Convolutions)来处理时间序列数据,并通过膨胀卷积(Dilated Convolutions)来增加感受野(Receptive Field),从而捕捉长期依赖关系。
双向TCN则允许模型在两个方向上(正向和反向)同时处理时间序列数据,这有助于捕捉更多的上下文信息。
长短时记忆网络(LSTM):

LSTM 是一种特殊的循环神经网络(RNN),通过引入记忆单元和门控机制来解决传统RNN在处理长期依赖时的梯度消失和梯度爆炸问题。
LSTM 能够学习并记住时间序列数据中的长期依赖关系,并将其用于预测任务。
结合这两种技术,BiTCN-LSTM 能够更有效地处理复杂的时间序列预测问题。它首先通过双向TCN捕捉时间序列数据中的局部特征和长期依赖关系,然后将这些特征传递给LSTM进行进一步的处理和预测。

这种混合模型在处理具有复杂动态和长期依赖的时间序列数据时可能表现出优越的性能。然而,它也需要更多的计算资源和调参技巧来充分发挥其潜力。

需要注意的是,虽然 BiTCN-LSTM 在理论上看起来很有前途,但在实际应用中,其性能和效果还需要根据具体的任务和数据集进行验证和调整。同时,该模型可能并不是所有时间序列预测任务的最佳选择,因此在选择模型时需要仔细考虑任务的特点和需求。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测 。
% 添加残差块到网络
    lgraph = addLayers(lgraph, layers);
 
    % 连接卷积层到残差块
    lgraph = connectLayers(lgraph, outputName, "conv1_" + i);
 
    % 创建 TCN反向支路flip网络结构
    Fliplayers = [
        FlipLayer("flip_" + i)                                                                                               % 反向翻转
        convolution1dLayer(1, numFilters, Name = "convSkip_"+i);                                                             % 反向残差连接
        convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv2_" + i)   % 一维卷积层
        layerNormalizationLayer                                                                                              % 层归一化
        spatialDropoutLayer(dropoutFactor)                                                                                   % 空间丢弃层
        convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal")                      % 一维卷积层
        layerNormalizationLayer                                                                                              % 层归一化
        reluLayer                                                                                                            % 激活层
        spatialDropoutLayer(dropoutFactor, Name="drop" + i)                                                                  % 空间丢弃层
    ];
 
    % 添加 flip 网络结构到网络
    lgraph = addLayers(lgraph, Fliplayers);
 
    % 连接 flip 卷积层到残差块
    lgraph = connectLayers(lgraph, outputName, "flip_" + i);
    lgraph = connectLayers(lgraph, "drop" + i, "add_" + i + "/in3");
    lgraph = connectLayers(lgraph, "convSkip_"+i, "add_" + i + "/in4");
    % 残差连接 -- 首层
    if i == 1
        % 建立残差卷积层
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/481413.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PSO-CNN-SVM,基于PSO粒子群优化算法优化卷积神经网络CNN结合支持向量机SVM数据分类(多特征输入多分类)-附代码

PSO-CNN-SVM,基于PSO粒子群优化算法优化卷积神经网络CNN结合支持向量机SVM数据分类 下面是一个大致的步骤: 数据准备: 准备训练集和测试集数据。对数据进行预处理,包括归一化、标准化等。 设计CNN模型: 设计合适的CNN…

vue.config.js配置项

vue.config.js配置项 vue-cli3 脚手架搭建完成后,项目目录中没有 vue.config.js 文件,需要手动创建 创建vue.config.js vue.config.js(相当于之前的webpack.config.js) 是一个可选的配置文件,如果项目的 (和 package.json 同级的) 根目录中存…

基于OrangePi Zero2的智能家居项目(准备阶段)

一、需求及项目准备(前期准备) 1、各类的需求 以及复习巩固的东西 2、系统框架图 3、硬连接线 3.1硬件准备 USB充电头(当前实测可用:5V/2.5A)x1、USB转TYPE-Cx1、SU-03Tx1、烟雾报警模块x1、4路继 电器x1、 OLEDx1、 电磁锁x1&a…

【C语言】多文件编程以及static关键字

1、多文件编程 把函数声明放在头文件xxx.h中&#xff0c;在主函数中包含相应头文件在头文件对应的xxx.c中实现xxx.h声明的函数 a、主文件 #include<stdio.h> #include "MyMain.h"//需要包含头文件&#xff0c;头文件包含我们自定义的函数int main(){int num…

JWT的实现及其适用场景

官方文档 一、什么是JWT JWT&#xff08;全称JSON Web Token&#xff09;是一种开放标准&#xff08;RFC 7519&#xff09;&#xff0c;它定义了一种紧凑且自包含的方式&#xff0c;用于作为JSON对象在各方之间安全地传输信息。此信息是经过数字签名的&#xff0c;因此可以验…

分页多线程处理大批量数据

1.业务场景 因为需要从一个返利明细表中获取大量的数据&#xff0c;生成返利报告&#xff0c;耗时相对较久&#xff0c;作为后台任务执行。但是后台任务如果不用多线程处理&#xff0c;也会要很长时间才能处理完。 另外考虑到数据量大&#xff0c;不能一次查询所有数据在内存…

LaTeX论文汇报ppt模板

在 LaTeX 的 beamer 类中&#xff0c;您可以使用不同的主题和模板来创建适合论文汇报的演示文稿。以下是一个使用了比较正式的 Madrid 主题的模板&#xff0c;您可以基于这个模板进行定制和扩展&#xff0c;以满足您论文汇报的需求。当需要在ppt输入中文的时候需要将第一行中的…

北京中科富海低温科技有限公司确认出席2024第三届中国氢能国际峰会

会议背景 随着全球对清洁能源的迫切需求&#xff0c;氢能能源转型、工业应用、交通运输等方面具有广阔前景&#xff0c;氢能也成为应对气候变化的重要解决方案。根据德勤的报告显示&#xff0c;到2050年&#xff0c;绿色氢能将有1.4万亿美元市场。氢能产业的各环节的关键技术突…

大数据技术在工厂生产数字转型中的应用与价值

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验&#xff01;希望我的分享能帮助到您&#xff01;如需帮助可以评论关注私信我们一起探讨&#xff01;致敬感谢感恩&#xff01; 随着大数据技术的快速发展&#xff0c;越来越多的企业开始关注并应用大数据技术&#x…

C语言:自定义类型(结构体)

目录 一、结构的特殊声明二、结构的自引用三、结构体内存对齐1.对齐规则2.为什么存在内存对齐(1)平台原因 (移植原因)&#xff1a;(2)性能原因&#xff1a; 3.修改默认对齐数 四、结构体传参五、结构体实现位段1.什么是位段2.位段的内存分配3.位段的跨平台问题4.位段使用的注意…

tftp使用

下载 sudo apt-get install tftpd-hpa 创建文件夹 mkdir /home/ljl/work/tftpd mkdir /home/ljl/tftpd chmod 777 tftpd/编辑 sudo vim /etc/default/tftpd-hpa //服务器端 sudo apt-get install tftp-hpa //客户端编辑权限 sudo vi /etc/default/tftpd-hpa 内容&#xff1…

jenkins构建完成后部署到本机,无法读取容器外文件夹

项目背景&#xff1a; Dockerjenkins 构建完成后&#xff0c;要把打包的dist文件夹内容移动到网站目录 /www/wwwroot/xxxxxx 文件夹下&#xff1b;但是获取不到jenkins容器外的文件夹。 解决办法&#xff1a; 在容器中&#xff0c;添加挂载/映射本机目录&#xff0c;把网站…

两直线交点算法 C

求两直线交点算法 有中间交点 则CD在AB异侧 A B A C A B A D \nobreak AB \times AC \newline AB \times AD ABACABAD 异号 叉乘后相乘小于零 等于零的几种情况 A B C与AB共线 D与AB共线 求交点&#xff0c;可由面积比例用叉乘计算 C E C D S A B C S A B C D . \frac…

yarn的使用与安装

文章目录 1.安装方式一&#xff1a;全局安装yarn2.安装方式二&#xff1a;通过开启corepack安装3.其他部分yarn命令4.Yarn镜像配置5.Pnpm使用方法同yarn无区别,可按照以上yarn的安装以及使用方式来使用pnmp 1.安装方式一&#xff1a;全局安装yarn 全局安装yarn npm i yarn -g…

视频记录历史播放位置效果

简介 每次打开页面视频从上一次的播放位置开始播放 利用lodash库做节流 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-sca…

自动驾驶---Motion Planning之轨迹Path优化

1 背景 在之前的几篇文章中,不管是通过构建SL图《自动驾驶---Motion Planning之Path Boundary》,ST图《自动驾驶---Motion Planning之Speed Boundary》,又或者是构建SLT图《自动驾驶---Motion Planning之构建SLT Driving Corridor》,最终我们都是为了得到boundary的信息。 …

牛客题霸-SQL进阶篇(刷题记录二)

本文基于前段时间学习总结的 MySQL 相关的查询语法&#xff0c;在牛客网找了相应的 MySQL 题目进行练习&#xff0c;以便加强对于 MySQL 查询语法的理解和应用。 由于涉及到的数据库表较多&#xff0c;因此本文不再展示&#xff0c;只提供 MySQL 代码与示例输出。 部分题目因…

【隐私计算实训营003详解隐私计算框架及技术要点】

1. 隐语架构一览 1.1 隐语架构 隐语架构通常指的是一种面向隐私保护计算的软件框架或解决方案&#xff0c;它采用了密码学、可信执行环境&#xff08;TEE&#xff09;、多方安全计算&#xff08;MPC&#xff09;等多种隐私保护技术来实现在数据加密状态下进行计算&#xff0c;…

【计算机网络篇】数据链路层(2)封装成帧和透明传输

文章目录 &#x1f95a;封装成帧和透明传输&#x1f388;封装成帧&#x1f388;透明传输&#x1f5d2;️面向字节的物理链路使用字节填充的方法实现透明传输。&#x1f5d2;️面向比特的物理链路使用比特填充的方法实现透明传输。 &#x1f6f8;练习 &#x1f95a;封装成帧和透…

河北盟盾:高性能钢结构防火涂料,安全守护新力量

在现代化建设的浪潮中&#xff0c;防火安全日益成为各行业关注的焦点。河北盟盾防火材料有限公司以其卓越的产品质量和稳定性能&#xff0c;赢得了市场的广泛认可。公司始终坚持以科技为先导&#xff0c;以创新为动力&#xff0c;不断推出高品质、高性能的防火涂料产品。 公司的…