基于机器学习的供水管网水力模型

大数据、人工智能、物联网等前沿技术正推动人类社会发展发生深刻变革。2021年12月12日,国务院印发了《“十四五”数字经济发展规划》,进一步指明了各行业数字化转型发展的方向。作为传统的民生保障行业,供水行业也面临着向数字化智慧化转型的机遇与挑战。供水管网水力模型构建是实现供水系统运行管理智慧化转型的核心技术。随着大数据、物联网、人工智能等技术的飞速发展和在供水行业的逐步深入应用,基于传统管网水力平差理论的供水管网模拟技术已难以满足智慧水务建设在实时性、高精度、自适应性等方面特征的需求。本文介绍了基于大数据分析、人工智能等先进技术与专业供水管网水力模型进行融合,构建新一代融合大数据、人工智能技术的管网模拟理论体系和技术框架,突破供水管网在线模拟技术瓶颈,推动供水行业的数字化转型,实现传统的供水管网水力平差及建模技术从“离线分析”向“实时在线”、从“计算器”向“决策器”的转型升级,为供水系统的智慧化发展建设提供核心技术支撑。

一、技术背景

本文所述供水水力管网模型是指基于管网恒定流假设的水力方程组系统。供水管网水力建模以传统的水力平差理论为基础,通过计算机软硬件技术模拟城镇给排水管网系统的运行状态。建成后的供水管网水力模型在辅助管网规划设计、运行调度优化、异常状态诊断、专家决策支持等方面发挥了重要作用。

管网水力模型校核是管网建模过程的关键环节,指通过调整模型系列参数,提高模型模拟结果与实际运行状态情况一致性的技术方法。校核后达到一定精度的管网模型才能进行支撑不同场景的工程应用。管网水力模型校核精度问题一直是影响管网水力模型开展多种供水管网业务场景深度应用的关键瓶颈。近年来,随着我国城镇化快速推进,城镇规模的快速增长导致了供水管网系统日趋庞大复杂,运行管理难度越来越大;另一方面,智慧城市建设背景下,供水行业的精细化智能化管理对管网水力模型的实时性与模拟精度提出了更高的要求。基于传统水力平差理论的供水管网校核技术存在的计算效率低、实时性差、人工依赖强、智能化低等瓶颈问题日益凸显,已不能满足供水行业在漏损控制、节能运行、优化更新改造等方面对模型提出的精细化、智能化等技术需求。基于大数据及人工智能等先进技术的供水管网水力模型及智慧化应用平台已成为供水行业发展的迫切需求之一。

二、技术现状及瓶颈问题

管网水力模型校核是管网模型开展应用的基础,模型校核精度问题一直是阻碍管网水力模型开展多种供水管网业务场景深度应用的关键瓶颈。目前,全世界范围内的管网水力模型以传统的离线水力模型为主,即以某一特定时段(一般为1周)的管网状态为依据建立并进行校核。但供水管网的运行实际上是持续动态的,而离线模型无法适应管网运行状态的实际变化,只能通过定期或不定期重新建模和校核的方式予以弥补,灵活性很差;另一方面,离线模型的维护更新专业化要求高、难度大,而供水企业在水力模型领域的技术力量相对薄弱,模型的维护更新难度大成为供水企业普遍的痛点和瓶颈,也是目前供水管网模型进行深度应用面临的普遍性问题。

随着目前物联网传感监测、数据通信传输等前沿技术的飞速发展,供水管网系统的运行状态监测大数据积累日趋丰富,然而,由于缺乏与专业结合的监测数据分析与挖掘技术,难以发挥海量监测大数据在实际运行管理中的作用,亟待探索利用海量管网监测大数据的方法技术,推动供水系统管理向精细化智能化的发展。然而,随着城镇化的快速推进,尤其是城乡一体化发展,城镇供水管网系统规模不断增大,管网结构日趋复杂,建模难度加大;另一方面,智慧水务建设在供水行业的逐步普及将对管网水力模型模的实时性、精确度等提进更高的要求。综上所述,传统的供水管网校核技术存在实时性差、精度低等瓶颈问题,已不能满足供水行业在漏损控制、优化调度、实时状态诊断等方面对模型提出的精细化、智能化等技术需求。

在管网监测大数据不断累积的新趋势下,如何充分利用并持续吸收监测数据、适应多种工况且实时性良好的在线校核方法,实现对供水管网尤其是大型复杂管网的水力状态实时更新,构建大型管网模型的高精度校核与线上自适应调整方法,是推荐供水系统精细化智能化管理亟待解决的核心关键。

三、技术原理

针对目前供水管网水力模型校核精度低、实时自适应差的关键瓶颈问题,本文介绍了一种基于传统的供水管网机理模型与管网监测大数据融合,人工智能算法为核心的供水管网水力模型在线校核技术体系,实现供水管网水力模型实时在线校核与运行异常状态诊断。以提高管网模型校核精度、实时性、异常运行状态自适应性等为主要目标,围绕着影响模型校核效果的欠压状态压力驱动模拟算法、管网校核参数分组、监测数据信息持续吸收与融合自适应校核、爆管异常运行状态侦测与定位等关键技术点展开系统研究。为了提高对爆管、消防等大流量出流运行工况时模拟的准确性,针对在业内广泛使用的开源管网模拟模型EPANET3存在的极端工况计算不收敛问题,提出压力驱动水力求解迭代过程控制的算法,解决了管网爆管等极端工况下模型欠压水力模拟收敛过程不稳定问题(Science of the Total Environment,2019, 659: 983-994),提高了模型对管网中欠压异常工况模拟的准确性与计算速度(图1)。

图片

图1 压力驱动PAD求解迭代过程控制算法改进

供水管网中水力监测点相对较少,这使得待校核的参数数量远大于方程个数,导致参数解难以确定一直是模型校核的难点。本技术提出了采用机器学习方法进行管道粗糙系数优化分组,通过合并减少未知数,提高分组的合理性(Water Resources Research,2022,58, e2021WR031206);同时,采用创新提出的改进卡尔曼滤波方法持续充分吸收管网监测大数据,不断融合吸收模型与观测信息,实现管网模型摩阻系数与节点流量的自适应在线校核(Water Resources Research,2018,54, 5536-5550),本文所提出的自适应校核技术对管网异常运行工况具有良好的实时状态参数跟随性(图2)。

图片

图2 改进卡尔曼滤波校核算法对异常大流量节点状态突变的自适应跟随性

为了对管网系统运行过程发生的异常工况进行智能诊断识别,在融合校准的模型和在线监测数据的基础上,进一步嵌入深度学习算法进行异常工况在线诊断,实现在线模型实时校核并对爆管等异常运行工况的事件侦测预警与快速定位(Water Resources Research,2020,56,e2019WR025526),为供水企业进一步开发精细化智能化应用提供有力的技术支撑。

四、技术应用及前景

党的十九大报告进一步提出“推动互联网、大数据、人工智能和实体经济深度融合,支持传统产业优化升级,加快发展现代服务业,瞄准国际标准提高水平”的战略部署。国务院印发“十四五”数字经济发展规划(国发〔2021〕29号)进一步指明各行业的数字化发展方向。作为传统的民生保障行业,供水行业也面临着向数字化智慧化转型的任务。而供水管网水力模型是实现供水系统运行精细化智慧化转型的核心技术之一,智慧水务建设对高精度管网水力模型技术有迫切的需求。本技术方法充分吸收大数据分析、人工智能等先进前沿技术,并与本行业领域专业知识进行深度融合,构建适用大规模供水管网系统的在线水力模拟与运行状态行为预测技术,旨在为供水系统的数字化智能化转型升级提供核心计算引擎。随着物联网监测网络与数据通信技术的飞速发展,供水行业的数据采集与监视控制系统监测系统SCADA(Supervisory Control And Data Acquisition)所积累的数据将呈现几何级的增长,为该技术的实施奠定了良好的数据基础。本技术进一步发展完善了供水管网压力驱动模拟技术,提出了供水管网水力监测大数据的预处理与信息深度挖掘方法,并融合深度学习方法构建了大型管网水力模型在线自适应校核技术,实现了供水管网水力建模技术从“离线分析”向“实时在线”、从“计算器”向“决策器”的两个转变,为管网运行管理中的漏损控制、优化调度、更新改造、在线状态诊断等细分应用场景提供了重要的技术支撑,具有丰富的应用场景与显著的转化潜力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/47856.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL5.7 与 MariaDB10.1 审计插件兼容性验证

这是一篇关于发现 MariaDB 审计插件导致 MySQL 发生 crash 后,展开适配验证并进行故障处理的文章。 作者:官永强 爱可生DBA 团队成员,擅长 MySQL 运维方面的技能。热爱学习新知识,亦是个爱打游戏的宅男。 本文来源:原创…

利用mysqldump实现分库分表备份的shell脚本

一、信息摘要 linux版本:CentOS 7.9 mysql版本:MySQL 5.7.36 脚本实现功能:利用mysqldump工具实现对mysql中的数据库分库备份,和对所备份数据库中的表分表备份 二、shell脚本 #!/bin/bash ######################### #File n…

【雕爷学编程】MicroPython动手做(09)——零基础学MaixPy之人脸识别2

自己打包kfpkg,试着整了好几次,都是无法烧录,只好不做第七步了,直接把前面获得的人脸识别模型烧录了 烧录完成后,打开IDE串口,确认开发板Maixpy固件的版本,好像是前期的稳定版本V0.4.0 第九步&a…

LaTeX Error: File `tabu.sty‘ not found.

虽然Miktex可以自动下载和安装没有的库,但有些时候也有可能会直接报错: LaTeX Error: File tabu.sty not found. 解决方法就是打开控制台。然后手动下载:

WPF快速开发(2):图标库知识点

文章目录 前言知识点windows资源Style:样式Setter:属性继承关系 Trigger:触发器 WPF层级划分数据绑定声明数据上下文绑定数据模板 前言 图标资源下载 iconfont 知识点 windows资源 Window.Resources:资源位置声明X:Key:资源Id,用于前端的…

【C++】 函数模板和类模板

文章目录 一、模板1.1 函数模板和类模板1.2 函数模板1.2.1 普通函数和函数模板区别1.2.2 普通函数和函数模板调用规则1.2.3 模板局限性 1.3 类模板1.3.1 类模板对象做函数参数1.3.2 类模板的继承1.3.3 类模板成员函数的类外实现1.3.4 类模板分文件编写1.3.5 类模板全局函数类内…

Cookie 和 Session 区别——2023最新面试精简版本

Cookie 和 Session 的区别 原理:从”登录“过程看Jwt和Token,以及区分Cookie和Session概念 面试: 好的,面试官。 我先解释一下 Cookie,它是客户端浏览器用来保存服务端数据的一种机制。 当通过浏览器进行网页访问的时…

echarts坐标轴名称换行

一、期望效果: 期望超过6个字换行,最多可显示十个字 如图: 二、踩坑: echarts的width和overflow设置后换行无效。(如果其他人有设置有效的 还请说明下) 三、解决方案: 用\n换行&#xf…

CSS :nth-child

CSS :nth-child :nth-child 伪类根据元素在同级元素中的位置来匹配元素. CSS :nth-child 语法 值是关键词 odd/evenAnB最新的 [of S] 语法权重 浏览器兼容性 很简单的例子, 来直觉上理解这个伪类的意思 <ul><li class"me">Apple</li><li>B…

14.Netty源码之模拟简单的HTTP服务器

highlight: arduino-light 简单的 HTTP 服务器 HTTP 服务器是我们平时最常用的工具之一。同传统 Web 容器 Tomcat、Jetty 一样&#xff0c;Netty 也可以方便地开发一个 HTTP 服务器。我从一个简单的 HTTP 服务器开始&#xff0c;通过程序示例为你展现 Netty 程序如何配置启动&a…

智能视频监控平台EasyCVR电子地图视频播放全屏情况下的异常排查与解决

安防视频监控平台TSINGSEE青犀视频EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。 在视频监控管理平台TSINGSEE青…

Vue项目中强制刷新页面的方法

我们在动态切换组件的过程中&#xff0c;导航栏和底栏不动&#xff0c;动态切换中间区域的情况&#xff0c;在首页可以进行跳转任意组件&#xff0c;在组件与组件之间不能相互跳转&#xff0c;路由发生了变化&#xff0c;但是页面未改变&#xff0c;这时我们就需要强制刷新页面…

Individual household electric power consumption个人家庭用电量数据挖掘与时序预测建模

今天接到一个任务就是需要基于给定的数据集来进行数据挖掘分析相关的计算&#xff0c;并完成对未来时段内数据的预测建模&#xff0c;话不多少直接看内容。 官方数据详情介绍在这里&#xff0c;如下所示&#xff1a; 数据集中一共包含9个不同的字段&#xff0c;详情如下&#…

AP5216 DC-DC降恒流驱动IC LED电动摩托汽车 转向灯刹车灯雾灯驱动

产品描述 AP5216 是一款 PWM工作模式, 高效率、外围简单、内置功率管&#xff0c;适用于5V&#xff5e;100V输入的高精度降压 LED 恒流驱动芯片。输出最大功率可达9W&#xff0c;最大电流 1.0A。AP5216 可实现全亮/半亮功能切换&#xff0c;通过MODE 切换&#xff1a;全亮/半亮…

序列化模块pickle和json有什么区别

目录 什么是序列化模块pickle 什么是序列化模块json pickle和json有什么区别 总结 什么是序列化模块pickle pickle是Python中的内置模块&#xff0c;用于将Python对象序列化和反序列化为字节流。它提供了一种将复杂的数据结构&#xff08;如列表、字典、类实例等&#xff0…

字典树Trie

Trie树又称字典树&#xff0c;前缀树。是一种可以高效查询前缀字符串的树&#xff0c;典型应用是用于统计&#xff0c;排序和保存大量的字符串&#xff08;但不仅限于字符串&#xff09;&#xff0c;所以经常被搜索引擎系统用于文本词频统计。 它的优点是&#xff1a;利用字符串…

【图像处理】使用 OpenCV 将您的照片变成卡通

图像到卡通 一、说明 在当今世界&#xff0c;我们被图像和视频所包围。从社交媒体到广告&#xff0c;图像已成为一种强大的交流媒介。但是你有没有想过&#xff0c;如果你能把你的照片变成卡通会发生什么&#xff1f;想象一下&#xff0c;为您最喜欢的照片创建动画版本&#xf…

CSP 2021入门级 第一轮 题目讲解

A: a进栈&#xff0c;直接出栈&#xff1b;b进栈&#xff0c;直接出栈&#xff1b;c进栈&#xff0c;直接出栈&#xff1b;d进栈&#xff0c;直接出栈&#xff1b;e进栈&#xff0c;直接出栈。 B&#xff1a;全进栈后全出栈。 C&#xff1a;a和b先进栈&#xff0c;然后直接出…

网络安全(黑客)自学建议笔记

前言 网络安全&#xff0c;顾名思义&#xff0c;无安全&#xff0c;不网络。现如今&#xff0c;安全行业飞速发展&#xff0c;我们呼吁专业化的 就职人员与大学生 &#xff0c;而你&#xff0c;认为自己有资格当黑客吗&#xff1f; 本文面向所有信息安全领域的初学者和从业人员…

Spring AOP (面向切面编程)原理与代理模式—实例演示

一、AOP介绍和应用场景 Spring 中文文档 (springdoc.cn) Spring | Home 官网 1、AOP介绍&#xff08;为什么会出现AOP &#xff1f;&#xff09; Java是一个面向对象&#xff08;OOP&#xff09;的语言&#xff0c;但它有一些弊端。虽然使用OOP可以通过组合或继承的方…