【图像处理】使用 OpenCV 将您的照片变成卡通

图像到卡通

一、说明

        在当今世界,我们被图像和视频所包围。从社交媒体到广告,图像已成为一种强大的交流媒介。但是你有没有想过,如果你能把你的照片变成卡通会发生什么?想象一下,为您最喜欢的照片创建动画版本,或者将肖像转换为异想天开的插图。

        在本文中,我们将探讨如何使用 Python 中的 OpenCV 库将图像转换为卡通。OpenCV 是一个功能强大的计算机视觉库,为图像和视频处理提供了广泛的功能,包括边缘检测、颜色转换和过滤。我们将使用这些工具在给定的图像上创建卡通效果。

        为此,我们将首先导入必要的模块并加载输入图像。接下来,我们将对图像应用一系列转换,包括边缘检测、颜色量化和双边滤波。最后,我们将结合这些转换,在输入图像上创建卡通效果。在整篇文章中,我们将提供有关如何使用 OpenCV 实现每个转换的分步说明。在本文结束时,您将清楚地了解如何使用 OpenCV 在任何输入图像上创建卡通效果。因此,让我们深入了解如何使用OpenCV将图像转换为卡通!

二、导入必要的库 

import cv2
import numpy as np
import os

2.1 代码说明:

  • import cv2导入 OpenCV 库,该库为图像和视频处理提供了广泛的功能。
  • import numpy as np导入 NumPy 库,这是一个流行的库,用于在 Python 中处理数组和矩阵。
  • import os导入操作系统模块,该模块提供了一种与文件系统交互的方法。

总的来说,这段代码导入了在 Python 中使用 OpenCV 执行图像处理的必要模块。

2.2 在 Python 中使用 OpenCV 显示输入图像:

img = cv2.imread('original_picture.jpg')
cv2.imshow("original", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原始图片

2.3 代码说明:

  • cv2.imread('original_picture.jpg')将名为“original_picture.jpg”的输入图像加载到名为 的变量中。这是您想要的图片的名称。img
  • cv2.imshow("original", img) 在标题为“原始”的窗口中显示输入图像。
  • cv2.waitKey(0)等待按键。参数 0 表示程序将无限期等待,直到按下某个键。
  • cv2.destroyAllWindows() 关闭所有打开的窗口。

三、使用 K 均值聚类进行颜色量化:

def color_quantization(img, k):
# Transform the image
  data = np.float32(img).reshape((-1, 3))

# Determine criteria
  criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)

# Implementing K-Means
  ret, label, center = cv2.kmeans(data, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
  center = np.uint8(center)
  result = center[label.flatten()]
  result = result.reshape(img.shape)
  return result

3.1 功能说明:

  • 该函数采用两个参数 — 输入图像和聚类数。imgk
  • 输入图像首先使用 NumPy 库转换为像素值的二维数组。
  • 为 K-Means 聚类分析算法确定一组条件,包括聚类中心的最大迭代次数和最小变化。
  • K 均值聚类分析算法使用 cv2.kmeans() 函数应用于数据,具有指定数量的聚类和条件。如果变量发生变化,该函数将生成具有不同数量颜色簇的新量化图像。较小的值 将导致具有较少颜色的量化图像,而较大的值 将导致具有更多颜色的量化图像。kkk
  • 生成的聚类中心使用 NumPy 函数转换为 8 位整数。np.uint8()
  • 原始图像被展平为像素值的一维数组,每个像素被分配到其最近的聚类中心。
  • 然后将生成的像素值数组重新塑造回原始输入图像的形状。
  • 生成的量化图像作为函数的输出返回。

3.2 创建边缘遮罩:

def edge_mask(img, line_size, blur_value):
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  gray_blur = cv2.medianBlur(gray, blur_value)
  edges = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, line_size, blur_value)
  return edges

3.3 功能说明:

  • 该函数有三个参数——输入图像、蒙版中线条的大小和应用于灰度图像的模糊程度。如果变量发生变化,掩码中线条的大小也会相应更改。较小的值将导致更细的线条,而较大的值将导致较粗的线条。imgline_sizeblur_valueline_size
  • 首先使用该函数将输入图像转换为灰度。cv2.cvtColor()
  • 然后使用具有指定 .如果变量发生变化,应用于灰度图像的模糊级别将发生变化。较小的值将导致较少的模糊,而较大的值将导致更多的模糊。cv2.medianBlur()blur_valueblur_value
  • 通过使用该功能对模糊的灰度图像应用自适应阈值来创建边缘遮罩。这种自适应阈值方法根据每个像素周围局部邻域中像素值的平均值计算每个像素的阈值。cv2.adaptiveThreshold()
  • 生成的边缘掩码作为函数的输出返回。

四、从图像生成铅笔素描:

line_size = 7
blur_value = 7

edges = edge_mask(img, line_size, blur_value)
cv2.imwrite('pencil_sketch.jpg', edges)
cv2.imshow('pencil sketch', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

铅笔素描

4.1 代码说明:

  • 代码首先将 和 的值设置为 7。如果 和 的值发生变化,则生成的铅笔素描将受到影响。较小的 值将导致线条越细,而较大的值将导致线条变粗。同样,较小的 值将导致较少的模糊,而较大的值将导致更多的模糊,这可能会影响铅笔草图的整体外观。line_sizeblur_valueline_sizeblur_valueline_sizeblur_value
  • 使用具有指定和 的函数从输入图像生成边缘掩码。imgedge_mask()line_sizeblur_value
  • 生成的边缘遮罩使用该函数保存为名为“pencil_sketch.jpg”的新图像文件。cv2.imwrite()
  • 然后使用该函数显示铅笔素描图像。cv2.imshow()
  • 程序等待使用该函数的用户按键。cv2.waitKey(0)
  • 最后,使用该功能关闭所有打开的窗口。cv2.destroyAllWindows()

4.2 从图像生成卡通:

total_color = 9
img = color_quantization(img, total_color)
cv2.imwrite('cartoonize.jpg', img)
cv2.imshow('Cartoonize', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

卡通化图片

4.3 代码说明:

  • 代码首先将值设置为 9。如果值发生变化,则生成的卡通图像将受到影响。较小的 值将导致较少的颜色,而较大的值将导致更多的颜色,这可能会影响卡通图像的整体外观。total_colortotal_colortotal_color
  • 调用该函数以将输入图像中的颜色数减少到指定的 。color_quantization()imgtotal_color
  • 生成的图像被保存为一个名为“cartoonize.jpg”的新图像文件使用该功能。cv2.imwrite()
  • 然后使用该功能显示卡通图像。cv2.imshow()
  • 程序等待使用该函数的用户按键。cv2.waitKey(0)
  • 最后,使用该功能关闭所有打开的窗口。cv2.destroyAllWindows()

五、对图像应用双边滤镜:

bilateral = cv2.bilateralFilter(img, 15, 75, 75)
# Save the output.
cv2.imwrite('blur.jpg', bilateral)
img = cv2.imread('blur.jpg')
cv2.imshow("Blur", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

双边滤波

5.1 代码说明:

  • 代码首先使用该函数将双边筛选器应用于输入图像。筛选器大小设置为 15,西格玛颜色和西格玛空间的值均设置为 75。imgcv2.bilateralFilter()
  • 更改双边滤镜的内核大小、西格玛颜色和西格玛空间的值将影响应用于图像的模糊级别。较小的内核大小和 sigma 值将导致较少的模糊,而较大的值将导致更多的模糊。更改这些值可能会更改生成的模糊图像的整体外观。
  • 生成的模糊图像被保存为一个名为“blur.jpg”的新图像文件,使用该功能。cv2.imwrite()
  • 然后使用该函数将模糊的图像加载回内存并分配给变量。cv2.imread()img

5.2 总输出:

5.3 另一种方式:

import cv2
import numpy as np

# Load the input image
img = cv2.imread('input_image.jpg')

# Apply bilateral filter to smooth the image
img_smooth = cv2.bilateralFilter(img, 9, 75, 75)

# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Apply edge detection to the grayscale image
edges = cv2.Canny(gray, 100, 200)

# Apply color quantization to the smoothed image
img_quant = cv2.cvtColor(img_smooth, cv2.COLOR_BGR2RGB)
Z = img_quant.reshape((-1,3))
Z = np.float32(Z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 8
ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img_quant.shape))

# Combine the edges and color quantization to create the cartoon effect
cartoon = cv2.bitwise_and(res2, res2, mask=edges)

# Display the output image and save it
cv2.imshow('Cartoon', cartoon)
cv2.waitKey(0)
cv2.destroyAllWindows()

        总之,使用 OpenCV 将图像转换为卡通是一种有趣且创造性的方式,可以为您的照片赋予新的生命。在本文中,我们讨论了如何使用 OpenCV 通过应用各种图像处理技术(如颜色量化、边缘检测和双边过滤)将图像转换为卡通。通过结合这些技术,我们能够从普通照片中制作出风格化的卡通图像。

        虽然本文中提供的代码是一个很好的起点,但有很多方法可以自定义转换过程以获得不同的结果。尝试不同的参数值或应用其他图像处理技术有助于创建独特且个性化的卡通风格图像。有了一点创造力和一些图像处理技术的知识,可能性是无穷无尽的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/47828.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CSP 2021入门级 第一轮 题目讲解

A: a进栈,直接出栈;b进栈,直接出栈;c进栈,直接出栈;d进栈,直接出栈;e进栈,直接出栈。 B:全进栈后全出栈。 C:a和b先进栈,然后直接出…

网络安全(黑客)自学建议笔记

前言 网络安全,顾名思义,无安全,不网络。现如今,安全行业飞速发展,我们呼吁专业化的 就职人员与大学生 ,而你,认为自己有资格当黑客吗? 本文面向所有信息安全领域的初学者和从业人员…

Spring AOP (面向切面编程)原理与代理模式—实例演示

一、AOP介绍和应用场景 Spring 中文文档 (springdoc.cn) Spring | Home 官网 1、AOP介绍(为什么会出现AOP ?) Java是一个面向对象(OOP)的语言,但它有一些弊端。虽然使用OOP可以通过组合或继承的方…

使用xtcp映射穿透指定服务

使用xtcp映射穿透指定服务 管理员Ubuntu配置公网服务端frps配置service自启(可选) 配置内网服务端frpc配置service自启(可选) 使用者配置service自启(可选) 通过frp实现内网client访问另外一个内网服务器 管理员 1)配置公网服务端frps2)配置内网服务端…

ARM汇编中预定义的寄存器和协处理器名称

一、是什么? 预定义的寄存器和协处理器名称,汇编代码中直接使用就可以. # 二、使用步骤 1.引入库 代码如下(示例): .global _start _start:mov r0,#0x18LDR R3,=0x55555555mov r1,#0x18LDR R1,=0x55555555mov r2,#

java对象的强引用,弱引用,软引用,虚引用

前言:java对象在java虚拟机中的生存状态,面试可能会有人问道,了解一下 这里大量引用 《疯狂Java讲义第4版》 书中的内容

⛳ 面向对象面试题

面向对象面试题目录 ⛳ 面向对象面试题🚜 一,成员变量,局部变量,类变量存储在内存的什么地方?🐾 1.1,类变量(静态成员变量)📝 1.2,成员变量⭐ 1.3…

Redis(四)—— Redis基本的事务操作、Redis实现乐观锁

一、Redis基本的事务操作 首先声明: redis的单条命令是保证原子性的(回想一下setnx k1 v1 k5 v5命令如果k1已经存在,那么k5也会设置失败)但是redis的事务不保证原子性!见下面“1.2 某条命令有错怎么办?”…

Ueditor 百度强大富文本Springboot 项目集成使用(包含上传文件和上传图片的功能使用)简单易懂,举一反三

Ueditor 百度强大富文本Springboot 项目集成使用 首先如果大家的富文本中不考虑图片或者附件的情况下,只考虑纯文本且排版的情况下我们可以直接让前端的vue来继承UEditor就可以啦。但是要让前端将那几个上传图片和附件的哪些功能给阉割掉! 然后就是说如…

SpringMvc+Mybatis完整项目

0目录 1.SpringmybatisSpringmvc查询功能(记录数) 2.查询所有 3.增删改查(根据id) 4.增加用户注册登录功能 1.SpringmybatisSpringmvc增删改查 新建数据库 创建工程 配置web.xml 配置applicationContext.xml 实体类 My…

SpringBoot 配置⽂件

1.配置文件作用 整个项⽬中所有重要的数据都是在配置⽂件中配置的,⽐如: 数据库的连接信息(包含⽤户名和密码的设置);项⽬的启动端⼝;第三⽅系统的调⽤秘钥等信息;⽤于发现和定位问题的普通⽇…

EMP-SSL: TOWARDS SELF-SUPERVISED LEARNING IN ONETRAINING EPOCH

Recently, self-supervised learning (SSL) has achieved tremendous success in learning image representation. Despite the empirical success, most self-supervised learning methods are rather “inefficient” learners, typically taking hundreds of training epoch…

MySQL高可用之MHA集群

目录 一、MHA概述 1.1 什么是 MHA 1.2 MHA 的组成 1.3 MHA 的特点 二、MySQL MHA搭建准备 2.1 实验思路 2.2 实验准备 MHA一主两从高可用集群示意图: 三、搭建 MySQL MHA 3.1 配置主从复制 1、四台服务器都关闭防火墙 2、修改 Master、Slave1、Slave2 节…

汇编调用C语言定义的全局变量

在threadx移植中,系统的systick通过了宏定义的方式定义,很难对接库函数的时钟频率,不太利于进行维护 所以在C文件中自己定义了一个systick_Div的变量,通过宏定义方式设定systick的时钟频率 在汇编下要加载这个systick分频系数 …

STM32 串口基础知识学习

串行/并行通信 串行通信:数据逐位按顺序依次传输。 并行通信:数据各位通过多条线同时传输。 对比 传输速率:串行通信较低,并行通信较高。抗干扰能力:串行通信较强,并行通信较弱。通信距离:串…

在Windows server 2012上使用virtualBox运行CentOS7虚拟机,被强制休眠(二)

问题场景 本月7月10日处理了一个虚拟机被强制暂停的问题,详见:在Windows server 2012上使用virtualBox运行CentOS7虚拟机,被强制暂停当时是由于C盘存储空间不足,导致虚拟机被强制暂停,将虚拟机迁移后,问题…

Mybatis-plus 配置自定义sql(.xml文件)查询语句的步骤

这是使用Mybatis-plus 的自动生成实体类代码生成.xml文件, 所以他会在java目录下,不在resources目录下 如果在java目录下的xml文件,需要分别配置application.yml和pom.xml文件 application.yml 文件进行以下配置: mybatis-plus…

【C刷题】矩阵相等判断与序列中删除指定的数字

目录 BC105-矩阵相等判断 方法1:两矩阵输入完毕后,进行比较 方法2:在接收过程中直接比较 BC98 - 序列中删除指定的数字 方法1:把要删除的元素改为0 方法2:打印不用删除的元素 方法3:定义两个下标 i 和 j(动图演示) 此篇文章是关于牛客网刷题的做题思路和代码…

Docker的数据管理和Dockerfile的指令

Docker的数据管理 一、Docker数据的概念1、数据卷2、数据卷容器 二、端口映射三、容器互联(使用centos镜像)四、Docker 镜像的创建1、基于现有镜像创建(1)首先启动一个镜像,在容器里做修改(2)然…

记录Selenium自动化测试过程中接口的调用信息

上一篇博客,我写了python自动化框架的一些知识和粗浅的看法,在上一篇中我也给自己提出一个需求:如果记录在测试过程中接口的调用情况?提出这个需求,我觉得是有意义的。你在测试过程中肯定会遇到一些莫名其妙的问题&…