刷题DAY30 | LeetCode 332-重新安排行程 51-N皇后 37-解数独

332 重新安排行程(hard)

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

思路:

这道题目有几个难点:

  • 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  • 有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
  • 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
  • 搜索的过程中,如何遍历一个机场所对应的所有机场。

1. 如何理解死循环
对于死循环,我来举一个有重复机场的例子:
在这里插入图片描述
为什么要举这个例子呢,就是告诉大家,出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。

2. 记录映射关系

有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?

一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map,如果让多个机场之间再有顺序的话,就是用std::map或者std::multimap或者 std::multiset。

这样存放映射关系可以定义为 unordered_map<string, multiset> targets 或者 unordered_map<string, map<string, int>> targets。

含义如下:

unordered_map<string, multiset> targets:unordered_map<出发机场, 到达机场的集合> targets

unordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets

这两个结构,我选择了后者,因为如果使用unordered_map<string, multiset<string>> targets 遍历multiset的时候,不能删除元素,一旦删除元素,迭代器就失效了

再说一下为什么一定要增删元素呢,正如开篇我给出的图中所示,出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会死循环。

所以搜索的过程中就是要不断的删multiset里的元素,那么推荐使用unordered_map<string, map<string, int>> targets。

在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

相当于说我不删,我就做一个标记!

3. 回溯法

这道题目我使用回溯法,那么下面按照我总结的回溯模板来:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

本题以输入:[[“JFK”, “KUL”], [“JFK”, “NRT”], [“NRT”, “JFK”]为例,抽象为树形结构如下:
在这里插入图片描述
开始回溯三部曲:

  • 递归函数参数

在讲解映射关系的时候,已经讲过了,使用unordered_map<string, map<string, int>> targets; 来记录航班的映射关系,我定义为全局变量。

当然把参数放进函数里传进去也是可以的,我是尽量控制函数里参数的长度。

参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。

代码如下:

// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {

注意函数返回值用的是bool!

一般函数返回值都是void,这次为什么是bool呢?

因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线,所以找到了这个叶子节点了直接返回

当然本题的targets和result都需要初始化,代码如下:

for (const vector<string>& vec : tickets) {
    targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
  • 递归终止条件

拿题目中的示例为例,输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。

所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。

代码如下:

if (result.size() == ticketNum + 1) {
    return true;
}
  • 单层搜索的逻辑

回溯的过程中,如何遍历一个机场所对应的所有机场呢?

这里刚刚说过,在选择映射函数的时候,不能选择unordered_map<string, multiset> targets, 因为一旦有元素增删multiset的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不在讨论了。

可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效。

所以选择unordered_map<string, map<string, int>> targets 来做机场之间的映射。

遍历过程如下:

for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
    if (target.second > 0 ) { // 记录到达机场是否飞过了
        result.push_back(target.first);
        target.second--;
        if (backtracking(ticketNum, result)) return true;
        result.pop_back();
        target.second++;
    }
}

可以看出 通过unordered_map<string, map<string, int>> targets里的int字段来判断 这个集合里的机场是否使用过,这样避免了直接去删元素。

代码实现:

class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {
    if (result.size() == ticketNum + 1) {
        return true;
    }
    for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
        if (target.second > 0 ) { // 记录到达机场是否飞过了
            result.push_back(target.first);
            target.second--;
            if (backtracking(ticketNum, result)) return true;
            result.pop_back();
            target.second++;
        }
    }
    return false;
}
public:
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        targets.clear();
        vector<string> result;
        for (const vector<string>& vec : tickets) {
            targets[vec[0]][vec[1]]++; // 记录映射关系
        }
        result.push_back("JFK"); // 起始机场
        backtracking(tickets.size(), result);
        return result;
    }
};

注意:

for (pair<const string, int>& target : targets[result[result.size() - 1]])

一定要加上引用即 & target,因为后面有对 target.second 做减减操作,如果没有引用,单纯复制,这个结果就没记录下来,那最后的结果就不对了。

加上引用之后,就必须在 string 前面加上 const,因为map中的key 是不可修改了,这就是语法规定了

详细解析:
代码实现文章


51 N皇后(hard)

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

思路:标准回溯法,再加一个isValid函数判断当前棋子是否可以放即可

首先来看一下皇后们的约束条件:

  • 不能同行
  • 不能同列
  • 不能同斜线

确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:
在这里插入图片描述

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。

回溯三部曲:

  • 递归函数参数

依然是定义全局变量二维数组result来记录最终结果。

参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:

vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:

if (row == n) {
    result.push_back(chessboard);
    return;
}
  • 单层搜索的逻辑

递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。

每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:

for (int col = 0; col < n; col++) {
    if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
        chessboard[row][col] = 'Q'; // 放置皇后
        backtracking(n, row + 1, chessboard);
        chessboard[row][col] = '.'; // 回溯,撤销皇后
    }
}

验证棋盘是否合法
按照如下标准去重:

  • 不能同行
  • 不能同列
  • 不能同斜线 (45度和135度角)
    代码如下:
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}

为什么没有在同行进行检查呢?

  • 因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

代码实现:

class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};

详细解析:
思路视频
代码实现文章


37 解数独(hard)

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则:

数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。

思路:回溯法+二维递归

棋盘搜索问题可以使用回溯法暴力搜索,只不过这次我们要做的是二维递归。

怎么做二维递归呢?

N皇后问题是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。

本题就不一样了,本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。

因为这个树形结构太大了,抽取一部分,如图所示:

在这里插入图片描述
回溯三部曲

  • 递归函数以及参数

递归函数的返回值需要是bool类型,为什么呢?因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。

代码如下:

bool backtracking(vector<vector<char>>& board)
  • 递归终止条件

本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。

不用终止条件会不会死循环?

递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

  • 递归单层搜索逻辑

在树形图中可以看出我们需要的是一个二维的递归(也就是两个for循环嵌套着递归)

一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!

代码如下:(详细看注释)

bool backtracking(vector<vector<char>>& board) {
    for (int i = 0; i < board.size(); i++) {        // 遍历行
        for (int j = 0; j < board[0].size(); j++) { // 遍历列
            if (board[i][j] != '.') continue;
            for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                if (isValid(i, j, k, board)) {
                    board[i][j] = k;                // 放置k
                    if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                    board[i][j] = '.';              // 回溯,撤销k
                }
            }
            return false;                           // 9个数都试完了,都不行,那么就返回false
        }
    }
    return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}

注意这里return false的地方,这里放return false 是有讲究的。

因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!

那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!

判断棋盘是否合法

判断棋盘是否合法有如下三个维度:

  • 同行是否重复
  • 同列是否重复
  • 9宫格里是否重复
    代码如下:
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}

代码实现:

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
    for (int i = 0; i < board.size(); i++) {        // 遍历行
        for (int j = 0; j < board[0].size(); j++) { // 遍历列
            if (board[i][j] == '.') {
                for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                    if (isValid(i, j, k, board)) {
                        board[i][j] = k;                // 放置k
                        if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                        board[i][j] = '.';              // 回溯,撤销k
                    }
                }
                return false;  // 9个数都试完了,都不行,那么就返回false
            }
        }
    }
    return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}
public:
    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};

详细解析:
思路视频
代码实现文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/477371.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt 不同数据类型转换

一.不同类型数据转换示例&#xff1a; #include <QGuiApplication> #include <QQmlApplicationEngine> #include <QJsonDocument> #include <QJsonObject> #include <QDebug>int main(int argc, char *argv[]) {QCoreApplication::setAttribute…

【C语言】linux内核pci_enable_device函数和_PCI_NOP宏

pci_enable_device 一、注释 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) {struct pci_dev *bridge;int err;int i, bars 0;/** 此时电源状态可能是未知的&#xff0c;可能是由于新启动或者设备移除调用。* 因此获取当前的电源状态&…

【Flask】Flask项目结构初识

1.前提准备 Python版本 # python 3.8.0 # 查看Python版本 python --version 安装第三方 Flask pip install flask # 如果安装失败&#xff0c;可以使用 -i&#xff0c;指定使用国内镜像源 # 清华镜像源&#xff1a;https://pypi.tuna.tsinghua.edu.cn/simple/ 检查 Flask 是…

网络: 网络层

IP地址: 分为网络号和主机号. 用来标识主机 IP协议 IP协议报文 4位版本号(version): 指定IP协议的版本, 对于IPv4来说, 就是4.4位头部长度(header length): IP头部的长度是多少个32bit, 也就是 length * 4 的字节数. 4bit表示最大的数字是15, 因此IP头部最大长度是60字节. 8…

传输介质介绍,数据链路层,MAC地址的构成和作用

简单网络 1.网卡 2.物理介质 3.协议栈 双绞线&#xff1a; UTP 非屏蔽双绞线 屏蔽式双绞线 水晶头 串口电缆&#xff1a;连接运营商 广域网一个用户接入到广域网&#xff0c;早期来讲&#xff0c;光纤 物理层&#xff1a;本质是通信&#xff0c;数据传输&#xff0c;介质产…

数据结构02:线性表 链表习题01[C++]

考研笔记整理~&#x1f95d;&#x1f95d; 之前的博文链接在此&#xff1a;数据结构02&#xff1a;线性表[顺序表链表]_线性链表-CSDN博客~&#x1f95d;&#x1f95d; 本篇作为链表的代码补充&#xff0c;供小伙伴们参考~&#x1f95d;&#x1f95d; 第1版&#xff1a;王道…

3.21小题总结

第一题&#xff1a;生日蛋糕 题解&#xff1a;这题是蛋糕结构是一层一层的&#xff0c;估计很多人很快就能想到是dfs&#xff0c;但是这题的难想的点在于 你每层的状态该怎么去确定&#xff0c;你怎么来确定每层的半径和高度是多少&#xff0c;一开始我也不知很理解&#xff0…

计算结构体的大小(结构体的内存对齐)

一&#xff1a;问题 问题所在&#xff1a;两个结构体应该都是6个字节大小&#xff0c;为什么一个12&#xff0c;一个6&#xff1f;&#xff1f;&#xff1f; 二&#xff1a;如何正确的计算结构体大小&#xff1f; 首先得掌握结构体的对齐规则&#xff1a; 第一&#xff1a; 第一…

Leetcode 994. 腐烂的橘子

心路历程&#xff1a; 一开始以为和刚做过的岛屿问题很像&#xff0c;只不过是把岛屿问题换成BFS去做&#xff0c;然后再加上一些计数的规则。结果做完后发现只能通过一半左右的测试用例&#xff0c;发现有一个逻辑错误在于&#xff0c;当腐烂的橘子位于两端时&#xff0c;可以…

约数(因数)问题(ACwing算法笔记)

869.试除法求约数 注意点&#xff1a; 1.试除法就是让i遍历的最大值到a/i。 2.约数成对存在&#xff0c;只遍历前一部分即可。 代码&#xff1a; #include<iostream> #include<queue> #include<algorithm> #include<cstring> #include<cmath>…

Go语言学习04~05 函数和面向对象编程

Go语言学习04-函数 函数是一等公民 <font color"Blue">与其他主要编程语言的差异</font> 可以有多个返回值所有参数都是值传递: slice, map, channel 会有传引用的错觉函数可以作为变量的值函数可以作为参数和返回值 学习函数式编程 可变参数 func s…

刷题28-30(力扣0322/0078/0221)

0322. 零钱兑换 题目&#xff1a; 给你一个整数数组 coins &#xff0c;表示不同面额的硬币&#xff1b;以及一个整数 amount &#xff0c;表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额&#xff0c;返回 -1 。你可以…

LLM - 大语言模型的分布式训练 概述

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/136924304 大语言模型的分布式训练是一个复杂的过程&#xff0c;涉及到将大规模的计算任务分散到多个计算节点上。这样做的目的是为了处…

java面试:常见的限流算法有哪些

1 什么是限流算法 限流算法是一种用于限制流量请求的频率或速率的算法&#xff0c;其目的是在高并发或大流量请求的情况下&#xff0c;保护系统服务的安全性和可用性。限流算法可以应对热点业务带来的突发请求、调用方bug导致的突发请求以及恶意攻击请求等情况。是一种系统保护…

10W字解析 SpringBoot技术内幕文档,实战+原理齐飞,spring事务实现原理面试

第3章&#xff0c;Spring Boot构造流程源码分析&#xff0c;Spring Boot的启动非常简单&#xff0c;只需执行一个简单的main方法即可&#xff0c;但在整个main方法中&#xff0c;Spring Boot都做了些什么呢&#xff1f;本章会为大家详细讲解Spring Boot启动过程中所涉及的源代码…

《深入解析 C#》—— C# 3 部分

文章目录 第三章 C#3&#xff1a;LINQ及相关特性3.1 自动实现属性&#xff08;*&#xff09;3.2 隐式类型 var&#xff08;*&#xff09;3.3 对象和集合初始化3.3.1 对象初始化器3.3.2 集合初始化器 3.4 匿名类型3.4.1 基本语法和行为3.4.2 编译器生成类型3.4.3 匿名类型的局限…

Linux信号补充——信号捕捉处理

一、信号的捕捉处理 ​ 信号保存后会在合适的时间进行处理&#xff1b; 1.1信号处理时间 ​ 进程会在操作系统的调度下处理信号&#xff0c;操作系统只管发信号&#xff0c;即信号处理是由进程完成的&#xff1b; ​ 1.信号处理首先进程得检查是否有信号&#xff1b;2.进程…

双指针(对撞指针、快慢指针)

本博客将讲述OJ题中的常用的双指针 双指针的含义 双指针算法是一种常用的算法技巧&#xff0c;它通常用于在数组或字符串中进行快速查找、匹配、排序或移动操作。 双指针并非真的用指针实现&#xff0c;一般用两个变量来表示下标&#xff08;在后面都用指针来表示)。双指针算…

QML TextField 默认无法鼠标选中内容

1.import QtQuick.Controls 2.0 后的TextField默认无法选中内容如下图&#xff1a; 2.增加属性设置 selectByMouse: true 可以选中内容了 TextField{ selectByMouse: true text:"1234567890987654321" } 效果如下:

多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

JUC Java.util.concurrent 包, 存放了并发编程相关的组件, 目的是更好的支持高并发任务 (多线程只是实现并发编程的一种具体方式 …) ReentrantLock 可重入互斥锁, 和 synchronized 定位类似, 用来实现互斥效果, 保证线程安全. synchronized 对对象加锁, 保护临界资源Reentreat…