java面试:常见的限流算法有哪些

1 什么是限流算法

限流算法是一种用于限制流量请求的频率或速率的算法,其目的是在高并发或大流量请求的情况下,保护系统服务的安全性和可用性。限流算法可以应对热点业务带来的突发请求、调用方bug导致的突发请求以及恶意攻击请求等情况。是一种系统保护策略,主要是避免在流量高峰导致系统被压垮,造成系统不可用的问题。

2 常见的限流算法

(1)计数器限流

一般用在单一维度的访问频率限制上,比如短信验证码每隔60s 只能发送一次,或者接口调用次数等。它的实现方法很简单,每调用一次就加 1,处理结束以后减一。

计数器限流算法的实现原理是在一个时间窗口内,每调用一次就增加计数器,当时间窗口到达设定的时间后,计数器归零。如果在时间窗口内再次调用,则计数器再次增加。这种算法的优点是实现简单,但是存在临界问题。如果在一个时间窗口内的最后一次调用正好在时间窗口结束的瞬间,那么这个请求会被拒绝,因为计数器已经归零。为了解决这个问题,可以采用滑动窗口限流算法。该算法将时间窗口划分为多个小的时间段,每个时间段都有一个独立的计数器。当一个时间段结束时,该时间段的计数器归零,而其他时间段的计数器保持不变。这样就可以避免在时间窗口结束的瞬间出现请求被拒绝的情况。

用计数器实现限流有点简单粗暴,一般我们会限制一秒钟的能够通过的请求数,比如限流QPS为100,算法的实现思路就是从第一个请求进来开始计时,在接下去的1s内,每来一个请求,就把计数加1,如果累加的数字达到了100,那么后续的请求就会被全部拒绝。等到1s结束后,把计数恢复成0,重新开始计数。

具体的实现可以是这样的:对于每次服务调用,可以通过 AtomicLong#incrementAndGet()方法来给计数器加1并返回最新值,通过这个最新值和阈值进行比较。

这种实现方式,有一个弊端:如果我在单位时间1s内的前10ms,已经通过了100个请求,那后面的990ms,只能眼巴巴的把请求拒绝,我们把这种现象称为“突刺现象”。

(2)滑动窗口限流

本质上也是一种计数器,只是通过以时间为维度的可滑动窗口设计,来减少了临界值带来的并发超过阈值的问题。每次进行数据统计的时候,只需要统计这个窗口内每个时间刻度的访问量就可以了。Spring Cloud里面的熔断框架Hystrix ,以及Spring Cloud Alibaba里面的Sentinel都采用了滑动窗口来做数据统计。

(3)漏桶算法

漏桶算法主要是控制数据注入到网络的速率,平滑网络上的突发流量,是一种恒定速率的限流算法,不管请求量是多少,服务端的处理效率是恒定的。漏桶算法提供了一种机制,通过它,突发流量可以被整形以便为网络提供一个稳定的流量。基于 MQ 来实现的生产者消费者模型,其实算是一种漏桶限流算法。

漏桶可以看作是一个带有常量服务时间的单服务器队列,如果漏桶(包缓存)溢出,那么数据包会被丢弃。 在网络中,漏桶算法可以控制端口的流量输出速率,平滑网络上的突发流量,实现流量整形,从而为网络提供一个稳定的流量。

如图所示,把请求比作是水,水来了都先放进桶里,并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。

可以看出,漏桶算法可以很好地控制流量的访问速度,一旦超过该速度就拒绝服务。

(4)令牌桶算法

相对漏桶算法来说,它可以处理突发流量的问题。它的核心思想是,令牌桶以恒定速率去生成令牌保存到令牌桶里面,桶的大小是固定的,令牌桶满了以后就不再生成令牌。每个客户端请求进来的时候,必须要从令牌桶获得一个令牌才能访问,当桶里没有令牌可取时,则排队等待。在流量低峰的时候,令牌桶会出现堆积,因此当出现瞬时高峰的时候,有足够多的令牌可以获取,因此令牌桶能够允许瞬时流量的处理。

网关层面的限流、或者接口调用的限流,都可以使用令牌桶算法,像 Google 的 Guava,和 Redisson 的限流,都用到了令牌桶算法在我看来,限流的本质是实现系统保护,最终选择什么样的算法,一方面取决于统计的精准度,另一方面考虑限流维度和场景的需求。

从原理上看,令牌桶算法和漏桶算法是相反的,一个“进水”,一个是“漏水”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/477349.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

10W字解析 SpringBoot技术内幕文档,实战+原理齐飞,spring事务实现原理面试

第3章,Spring Boot构造流程源码分析,Spring Boot的启动非常简单,只需执行一个简单的main方法即可,但在整个main方法中,Spring Boot都做了些什么呢?本章会为大家详细讲解Spring Boot启动过程中所涉及的源代码…

《深入解析 C#》—— C# 3 部分

文章目录 第三章 C#3:LINQ及相关特性3.1 自动实现属性(*)3.2 隐式类型 var(*)3.3 对象和集合初始化3.3.1 对象初始化器3.3.2 集合初始化器 3.4 匿名类型3.4.1 基本语法和行为3.4.2 编译器生成类型3.4.3 匿名类型的局限…

Linux信号补充——信号捕捉处理

一、信号的捕捉处理 ​ 信号保存后会在合适的时间进行处理; 1.1信号处理时间 ​ 进程会在操作系统的调度下处理信号,操作系统只管发信号,即信号处理是由进程完成的; ​ 1.信号处理首先进程得检查是否有信号;2.进程…

双指针(对撞指针、快慢指针)

本博客将讲述OJ题中的常用的双指针 双指针的含义 双指针算法是一种常用的算法技巧,它通常用于在数组或字符串中进行快速查找、匹配、排序或移动操作。 双指针并非真的用指针实现,一般用两个变量来表示下标(在后面都用指针来表示)。双指针算…

QML TextField 默认无法鼠标选中内容

1.import QtQuick.Controls 2.0 后的TextField默认无法选中内容如下图: 2.增加属性设置 selectByMouse: true 可以选中内容了 TextField{ selectByMouse: true text:"1234567890987654321" } 效果如下:

多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

JUC Java.util.concurrent 包, 存放了并发编程相关的组件, 目的是更好的支持高并发任务 (多线程只是实现并发编程的一种具体方式 …) ReentrantLock 可重入互斥锁, 和 synchronized 定位类似, 用来实现互斥效果, 保证线程安全. synchronized 对对象加锁, 保护临界资源Reentreat…

面向量产!基于视觉的速度距离估计

面向量产!基于视觉的速度距离估计 论文名称:Vision-based Vehicle Speed Estimation: A Survey 导读 在精确检测车速车距的方案中,视觉方案是非常具有挑战性的,但由于没有昂贵的距离传感器而大幅降低成本,所以潜力巨…

【现代C++】范围基于的for循环

现代C中的范围基于的for循环(range-based for loop)是C11引入的一项特性,旨在简化对容器或范围的迭代过程。这种循环语法不仅使代码更清晰易读,还减少了迭代时的错误。以下是范围基于的for循环的详细介绍: 1. 基本用法…

Vue3的与2的简单区别

Vue2选项式api Vue3组合式API setup方法的使用,最后需要return setup语法糖省略了内部的export default{} 和return 内容 以及组件的注册 reactive生成响应式对象,只能适用于复杂对象,简单类型不可 ref生成响应式数据:复杂类型和简…

leetcode 数组练习,美团优选面试题java

public int maxSubArray(int[] nums) { int countnums[0]; int resnums[0]; for(int i1;i<nums.length;i){ if(count<0){ countnums[i]; }else{ countnums[i]; } resMath.max(res,count); } return res; } 3、两数之和 利用map,来存储数组值和当前位置&…

【Review】电动汽车百人会

汽车强国靠四化--电动化、智能化、低碳化、全球化。 1.坚持电动化&#xff1a;电动化是经过二十多年反复论证的既定战略和技术路线、不能动摇、无需改变、要将电动化进行到底&#xff0c;全力攻克下一代电动化核心技术--全固态锂电池;市场方面要采用“双轮”驱动战略一方面继续…

基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1四旋翼无人机的动力学模型 4.2 PID控制器设计 4.3 姿态控制实现 4.4 VR虚拟现实动画展示 5.完整工程文件 1.课题概述 基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出vr虚拟现实…

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(四)—— 过拟合和欠拟合

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 通过增加容量或提前停止来提高性能。 在深度学习中&#…

Springboot 整合 Knife4j (API文档生成工具)

目录 一、Knife4j 介绍 二、Springboot 整合 Knife4j 1、pom.xml中引入依赖包 2、在application.yml 中添加 Knife4j 相关配置 3、打开 Knife4j UI界面 三、关于Knife4j框架中常用的注解 1、Api 2、ApiOperation ​3、ApiOperationSupport(order X) ​4、ApiImplici…

C# WPF编程-布局

C# WPF编程-布局 布局WPF布局原则布局过程布局容器布局属性Border控件StackPanel布局WrapPanel布局DockPanel布局Grid布局UniformGrid布局Canvas布局 布局 WPF布局原则 WPF窗口只能包含单个元素。为在WPF窗口中放置多个元素并创建更贴近实用的用户界面&#xff0c;需要在窗口…

linux系统----------MySQL索引浅探索

目录 一、数据库索引介绍 二、索引的作用 索引的副作用 (缺点) 三、创建索引的原则依据 四、索引的分类和创建 4.1普通索引 4.1.1直接创建索引 4.1.2修改表方式创建 4.1.3创建表的时候指定索引 4.2唯一索引 4.2.1直接创建唯一索引 4.2.2修改表方式创建 4.2.3创建表…

根据log信息解读内核(linux-2.6.32.24)的启动流程

目录 概述 1 从bootloader 到内核部分 2 初始化cache和CPU时钟 3 获取cache和memory信息 4 初始化cache、电源管理和中断 5 初始化USB和I2C 6 网络协议初始化 7 挂载JFFS2文件系统和初始化IO 8 初始化外围device 9 Nand Flash资源分配 10 初始化网络接口 11 注册US…

一文快速掌握docker的理念和基本使用

写在文章开头 写于一个周末&#xff0c;在复盘梳理文章时候发现这一篇关于早期了解docker时记录的文档&#xff0c;仔细阅读了一下&#xff0c;为了保证文章更加清晰以便读者使用。故再次重新一次梳理一次&#xff0c;通过这篇文章&#xff0c;你将会对docker的基本理念和基础…

Expert Prompting-引导LLM成为杰出专家

ExpertPrompting: Instructing Large Language Models to be Distinguished Experts 如果适当设计提示&#xff0c;对齐的大型语言模型&#xff08;LLM&#xff09;的回答质量可以显著提高。在本文中&#xff0c;我们提出了ExpertPrompting&#xff0c;以激发LLM作为杰出专家回…

【C语言基础】:字符串函数(二)

文章目录 一、strncpy函数的使用二、strncat函数的使用三、strncmp函数的使用四、strstr函数的使用和模拟实现4.1 strstr函数的使用4.2 strstr函数的模拟实现 五、strtok函数的使用六、strerror函数的使用 上节回顾&#xff1a;【C语言基础】&#xff1a;字符函数和字符串函数 …