目录
1143.最长公共子序列
1035.不相交的线
53. 最大子序和
1143.最长公共子序列
力扣题目链接(opens new window)
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
- 输入:text1 = "abcde", text2 = "ace"
- 输出:3
- 解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:
- 输入:text1 = "abc", text2 = "abc"
- 输出:3
- 解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:
- 输入:text1 = "abc", text2 = "def"
- 输出:0
- 解释:两个字符串没有公共子序列,返回 0。
思路:dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j];
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int n=text1.size();
int m=text2.size();
vector<vector<int>>dp(n+1,vector<int>(m+1,0));
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[n][m];
}
};
1035.不相交的线
力扣题目链接
我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
以这种方法绘制线条,并返回我们可以绘制的最大连线数。
思路:
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。
拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:
其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)
这么分析完之后,大家可以发现:本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>>dp(nums1.size()+1, vector(nums2.size()+1,0));
for(int i=1;i<=nums1.size();i++){
for(int j=1;j<=nums2.size();j++){
if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j], dp[i][j-1]);
}
}
return dp[nums1.size()][nums2.size()];
}
};
53. 最大子序和
力扣题目链接(opens new window)
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
- 输入: [-2,1,-3,4,-1,2,1,-5,4]
- 输出: 6
- 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6
思路:贪心。当然,也可以用动态规划做。dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
dp[i]只有两个方向可以推出来:
- dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
- nums[i],即:从头开始计算当前连续子序列和
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
dp[0]应该是多少呢?
根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。
class Solution {
public://贪心,当总和<0时立马重新置零求和
int maxSubArray(vector<int>& nums) {
int result=0;
int count =0;
for(int i=0;i<nums.size();i++){
count+=nums[i];
if(count>result){
result=count;
}
if(count<0) count=0;
}
return result;
}
};
class Solution {
public://动态规划
int maxSubArray(vector<int>& nums) {
if(nums.size()==0)return 0;
vector<int>dp(nums.size()+1,0);
dp[0]=nums[0];
int result =dp[0];
for(int i=1;i<nums.size();i++){
dp[i]=max(nums[i]+dp[i-1],nums[i]);
if(dp[i]>result)result=dp[i];
}
return result;
}
};
参考:代码随想录