C语言经典算法-6

文章目录

  • 其他经典例题跳转链接
    • 31.数字拆解
    • 32.得分排行
    • 33.选择、插入、气泡排序
    • 34.Shell 排序法 - 改良的插入排序
    • 35.Shaker 排序法 - 改良的气泡排序

其他经典例题跳转链接

C语言经典算法-1
1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠走迷官(一)6. 老鼠走迷官(二)7. 骑士走棋盘8. 八皇后9. 八枚银币10. 生命游戏

C语言经典算法-2
字串核对、双色、三色河内塔、背包问题(Knapsack Problem)、蒙地卡罗法求 PI、Eratosthenes筛选求质数

C语言经典算法-3
超长整数运算(大数运算)、长 PI、最大公因数、最小公倍数、因式分解、完美数、阿姆斯壮数

C语言经典算法-4
最大访客数、中序式转后序式(前序式)、后序式的运算、洗扑克牌(乱数排列)、Craps赌博游戏

C语言经典算法-5
约瑟夫问题(Josephus Problem)、排列组合、格雷码(Gray Code)、产生可能的集合、m元素集合的n个元素子集

C语言经典算法-6
数字拆解、得分排行,选择、插入、气泡排序、Shell 排序法 - 改良的插入排序、Shaker 排序法 - 改良的气泡排序

C语言经典算法-7
排序法 - 改良的选择排序、快速排序法(一)、快速排序法(二)、快速排序法(三)、合并排序法

C语言经典算法-8
基数排序法、循序搜寻法(使用卫兵)、二分搜寻法(搜寻原则的代表)、插补搜寻法、费氏搜寻法

C语言经典算法-9
稀疏矩阵、多维矩阵转一维矩阵、上三角、下三角、对称矩阵、奇数魔方阵、4N 魔方阵、2(2N+1) 魔方阵

31.数字拆解

说明
这个题目来自于 数字拆解,我将之改为C语言的版本,并加上说明。

题目是这样的:
3 = 2+1 = 1+1+1 所以3有三种拆法
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 共五种
5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 +1 +1 +1

共七种

依此类推,请问一个指定数字NUM的拆解方法个数有多少个?
解法
我们以上例中最后一个数字5的拆解为例,假设f( n )为数字n的可拆解方式个数,而f(x, y)为使用y以下的数字来拆解x的方法个数,则观察:
5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 +1 +1 +1

使用函式来表示的话:
f(5) = f(4, 1) + f(3,2) + f(2,3) + f(1,4) + f(0,5)

其中f(1, 4) = f(1, 3) + f(1, 2) + f(1, 1),但是使用大于1的数字来拆解1没有意义,所以f(1, 4) = f(1, 1),而同样的,f(0, 5)会等于f(0, 0),所以:
f(5) = f(4, 1) + f(3,2) + f(2,3) + f(1,1) + f(0,0)

依照以上的说明,使用动态程式规画(Dynamic programming)来进行求解,其中f(4,1)其实就是f(5-1, min(5-1,1)),f(x, y)就等于f(n-y, min(n-x, y)),其中n为要拆解的数字,而min()表示取两者中较小的数。

使用一个二维阵列表格table[x][y]来表示f(x, y),刚开始时,将每列的索引0与索引1元素值设定为1,因为任何数以0以下的数拆解必只有1种,而任何数以1以下的数拆解也必只有1种:

for(i = 0; i < NUM +1; i++){ 
    table[i][0] = 1; // 任何数以0以下的数拆解必只有1种 
    table[i][1] = 1; // 任何数以1以下的数拆解必只有1种 
}

接下来就开始一个一个进行拆解了,如果数字为NUM,则我们的阵列维度大小必须为NUM x (NUM/2+1),以数字10为例,其维度为10 x 6我们的表格将会如下所示:
1 1 0 0 0 0
1 1 0 0 0 0
1 1 2 0 0 0
1 1 2 3 0 0
1 1 3 4 5 0
1 1 3 5 6 7
1 1 4 7 9 0
1 1 4 8 0 0
1 1 5 0 0 0
1 1 0 0 0 0

实作

C 
#include <stdio.h> 
#include <stdlib.h> 
#define NUM 10    //  要拆解的数字 
#define DEBUG 0 

int main(void) { 
    int table[NUM][NUM/2+1] = {0}; // 动态规画表格 
    int count = 0; 
    int result = 0; 
    int i, j, k; 

    printf("数字拆解\n"); 
    printf("3 = 2+1 = 1+1+1 所以3有三种拆法\n"); 
    printf("4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1");   
    printf("共五种\n"); 
    printf("5 = 4 + 1 = 3 + 2 = 3 + 1 + 1");
    printf(" = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 +1 +1 +1");
    printf("共七种\n"); 
    printf("依此类推,求 %d 有几种拆法?", NUM); 

    // 初始化 
    for(i = 0; i < NUM; i++){ 
        table[i][0] = 1;  // 任何数以0以下的数拆解必只有1种 
        table[i][1] = 1;  // 任何数以1以下的数拆解必只有1种 
    }        

    // 动态规划 
    for(i = 2; i <= NUM; i++){ 
       for(j = 2; j <= i; j++){ 
            if(i + j > NUM) // 大于 NUM 
                continue; 
            
            count = 0;    
            for(k = 1 ; k <= j; k++){ 
                count += table[i-k][(i-k >= k) ? k : i-k];                  
            } 
            table[i][j] = count; 
        }            
    } 

    // 计算并显示结果 
    for(k = 1 ; k <= NUM; k++) 
        result += table[NUM-k][(NUM-k >= k) ? k : NUM-k];                    
    printf("\n\nresult: %d\n", result); 

    if(DEBUG) { 
        printf("\n除错资讯\n"); 
        for(i = 0; i < NUM; i++) { 
            for(j = 0; j < NUM/2+1; j++) 
                 printf("%2d", table[i][j]); 
            printf("\n"); 
        } 
    } 

    return 0; 
} 

32.得分排行

说明假设有一教师依学生座号输入考试分数,现希望在输入完毕后自动显示学生分数的排行,当然学生的分数可能相同。
解法这个问题基本上要解不难,只要使用额外的一个排行阵列走访分数阵列就可以了,直接使用下面的程式片段作说明:

for(i = 0; i < count; i++) { 
    juni[i] = 1; 
    for(j = 0; j < count; j++) { 
        if(score[j] > score[i]) 
            juni[i]++; 
    } 
} 
printf("得分\t排行\n"); 
for(i = 0; i < count; i++) 
    printf("%d\t%d\n", score[i], juni[i]); 

上面这个方法虽然简单,但是反覆计算的次数是n^2,如果n值变大,那么运算的时间就会拖长;改变juni阵列的长度为n+2,并将初始值设定为0,如下所示:
在这里插入图片描述

接下来走访分数阵列,并在分数所对应的排行阵列索引元素上加1,如下所示:
在这里插入图片描述

将排行阵列最右边的元素设定为1,然后依序将右边的元素值加至左边一个元素,最后排行阵列中的「分数+1」」就是得该分数的排行,如下所示:
在这里插入图片描述

这样的方式看起来复杂,其实不过在计算某分数之前排行的人数,假设89分之前的排行人数为x人,则89分自然就是x+1了,这也是为什么排行阵列最右边要设定为1的原因;如果89分有y人,则88分自然就是x+y+1,整个阵列右边元素向左加的原因正是如此。
如果分数有负分的情况,由于C/C++或Java等程式语言无法处理负的索引,所以必须加上一个偏移值,将所有的分数先往右偏移一个范围即可,最后显示的时候记得减回偏移值就可以了。

#include <stdio.h> 
#include <stdlib.h> 
#define MAX 100 
#define MIN 0 

int main(void) { 
    int score[MAX+1] = {0}; 
    int juni[MAX+2] = {0}; 
    int count = 0, i; 

    do { 
       printf("输入分数,-1结束:"); 
       scanf("%d", &score[count++]); 
    } while(score[count-1] != -1);
    count--; 

    for(i = 0; i < count; i++) 
        juni[score[i]]++; 
    juni[MAX+1] = 1; 

    for(i = MAX; i >= MIN; i--) 
        juni[i] = juni[i] + juni[i+1]; 
    printf("得分\t排行\n"); 
    for(i = 0; i < count; i++) 
        printf("%d\t%d\n", score[i], juni[score[i]+1]); 

    return 0; 
} 

33.选择、插入、气泡排序

说明选择排序(Selection sort)、插入排序(Insertion sort)与气泡排序(Bubble sort)这三个排序方式是初学排序所必须知道的三个基本排序方式,它们由于速度不快而不实用(平均与最快的时间复杂度都是O(n2)),然而它们排序的方式确是值得观察与探讨的。
解法
选择排序
将要排序的对象分作两部份,一个是已排序的,一个是未排序的,从后端未排序部份选择一个最小值,并放入前端已排序部份的最后一个,例如:

排序前:70 80 31 37 10 1 48 60 33 80

[1] 80 31 37 10 70 48 60 33 80 选出最小值1
[1 10] 31 37 80 70 48 60 33 80 选出最小值10
[1 10 31] 37 80 70 48 60 33 80 选出最小值31
[1 10 31 33] 80 70 48 60 37 80 …
[1 10 31 33 37] 70 48 60 80 80 …
[1 10 31 33 37 48] 70 60 80 80 …
[1 10 31 33 37 48 60] 70 80 80 …
[1 10 31 33 37 48 60 70] 80 80 …
[1 10 31 33 37 48 60 70 80] 80 …

插入排序
像是玩朴克一样,我们将牌分作两堆,每次从后面一堆的牌抽出最前端的牌,然后插入前面一堆牌的适当位置,例如:

排序前:92 77 67 8 6 84 55 85 43 67

[77 92] 67 8 6 84 55 85 43 67 将77插入92前
[67 77 92] 8 6 84 55 85 43 67 将67插入77前
[8 67 77 92] 6 84 55 85 43 67 将8插入67前
[6 8 67 77 92] 84 55 85 43 67 将6插入8前
[6 8 67 77 84 92] 55 85 43 67 将84插入92前
[6 8 55 67 77 84 92] 85 43 67 将55插入67前
[6 8 55 67 77 84 85 92] 43 67 …
[6 8 43 55 67 77 84 85 92] 67 …
[6 8 43 55 67 67 77 84 85 92] …

气泡排序法
顾名思义,就是排序时,最大的元素会如同气泡一样移至右端,其利用比较相邻元素的方法,将大的元素交换至右端,所以大的元素会不断的往右移动,直到适当的位置为止。

基本的气泡排序法可以利用旗标的方式稍微减少一些比较的时间,当寻访完阵列后都没有发生任何的交换动作,表示排序已经完成,而无需再进行之后的回圈比较与交换动作,例如:

排序前:95 27 90 49 80 58 6 9 18 50

27 90 49 80 58 6 9 18 50 [95] 95浮出
27 49 80 58 6 9 18 50 [90 95] 90浮出
27 49 58 6 9 18 50 [80 90 95] 80浮出
27 49 6 9 18 50 [58 80 90 95] …
27 6 9 18 49 [50 58 80 90 95] …
6 9 18 27 [49 50 58 80 90 95] …
6 9 18 [27 49 50 58 80 90 95] 由于接下来不会再发生交换动作,排序提早结束

在上面的例子当中,还加入了一个观念,就是当进行至i与i+1时没有交换的动作,表示接下来的i+2至n已经排序完毕,这也增进了气泡排序的效率。

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} 

void selsort(int[]);  // 选择排序 
void insort(int[]);   // 插入排序 
void bubsort(int[]);  // 气泡排序 

int main(void) {  
    int number[MAX] = {0}; 
    int i;  

    srand(time(NULL)); 

    printf("排序前:"); 
    for(i = 0; i < MAX; i++) { 
        number[i] = rand() % 100; 
        printf("%d ", number[i]); 
    } 

    printf("\n请选择排序方式:\n"); 
    printf("(1)选择排序\n(2)插入排序\n(3)气泡排序\n:"); 
    scanf("%d", &i); 

    switch(i) { 
        case 1: 
            selsort(number); break; 
        case 2: 
            insort(number); break; 
        case 3: 
            bubsort(number); break; 
        default: 
            printf("选项错误(1..3)\n"); 
    } 

    return 0; 
} 

void selsort(int number[]) { 
    int i, j, k, m; 

    for(i = 0; i < MAX-1; i++) { 
        m = i; 
        for(j = i+1; j < MAX; j++) 
            if(number[j] < number[m]) 
                m = j; 

        if( i != m) 
            SWAP(number[i], number[m]) 

        printf("第 %d 次排序:", i+1); 
        for(k = 0; k < MAX; k++) 
            printf("%d ", number[k]); 
        printf("\n"); 
    } 
 } 

 void insort(int number[]) { 
    int i, j, k, tmp; 

    for(j = 1; j < MAX; j++) { 
        tmp = number[j]; 
        i = j - 1; 
        while(tmp < number[i]) { 
            number[i+1] = number[i]; 
            i--; 
            if(i == -1) 
                break; 
        } 
        number[i+1] = tmp; 

        printf("第 %d 次排序:", j); 
        for(k = 0; k < MAX; k++) 
            printf("%d ", number[k]); 
        printf("\n"); 
    } 
} 

void bubsort(int number[]) { 
    int i, j, k, flag = 1; 

    for(i = 0; i < MAX-1 && flag == 1; i++) { 
        flag = 0; 
        for(j = 0; j < MAX-i-1; j++) { 
            if(number[j+1] < number[j]) { 
                SWAP(number[j+1], number[j]); 
                flag = 1; 
            } 
        } 

        printf("第 %d 次排序:", i+1); 
        for(k = 0; k < MAX; k++) 
            printf("%d ", number[k]); 
        printf("\n"); 
    } 
} 

34.Shell 排序法 - 改良的插入排序

说明
插入排序法由未排序的后半部前端取出一个值,插入已排序前半部的适当位置,概念简单但速度不快。

排序要加快的基本原则之一,是让后一次的排序进行时,尽量利用前一次排序后的结果,以加快排序的速度,Shell排序法即是基于此一概念来改良插入排序法。
解法
Shell排序法最初是D.L Shell于1959所提出,假设要排序的元素有n个,则每次进行插入排序时并不是所有的元素同时进行时,而是取一段间隔。

Shell首先将间隔设定为n/2,然后跳跃进行插入排序,再来将间隔n/4,跳跃进行排序动作,再来间隔设定为n/8、n/16,直到间隔为1之后的最 后一次排序终止,由于上一次的排序动作都会将固定间隔内的元素排序好,所以当间隔越来越小时,某些元素位于正确位置的机率越高,因此最后几次的排序动作将 可以大幅减低。

举个例子来说,假设有一未排序的数字如右:89 12 65 97 61 81 27 2 61 98

数字的总数共有10个,所以第一次我们将间隔设定为10 / 2 = 5,此时我们对间隔为5的数字进行排序,如下所示:
在这里插入图片描述

画线连结的部份表示 要一起进行排序的部份,再来将间隔设定为5 / 2的商,也就是2,则第二次的插入排序对象如下所示:
在这里插入图片描述

再来间隔设定为2 / 2 = 1,此时就是单纯的插入排序了,由于大部份的元素都已大致排序过了,所以最后一次的插入排序几乎没作什么排序动作了:

在这里插入图片描述

将间隔设定为n / 2是D.L Shell最初所提出,在教科书中使用这个间隔比较好说明,然而Shell排序法的关键在于间隔的选定,例如Sedgewick证明选用以下的间隔可以加 快Shell排序法的速度:
在这里插入图片描述

其中4*(2j)2 + 3*(2j) + 1不可超过元素总数n值,使用上式找出j后代入4*(2j)2 + 3*(2j) + 1求得第一个间隔,然后将2j除以2代入求得第二个间隔,再来依此类推。

后来还有人证明有其它的间隔选定法可以将Shell排序法的速度再加快;另外Shell排序法的概念也可以用来改良气泡排序法。
实作

C 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} 

void shellsort(int[]); 

int main(void) { 
    int number[MAX] = {0}; 
    int i;  

    srand(time(NULL)); 

    printf("排序前:"); 
    for(i = 0; i < MAX; i++) { 
        number[i] = rand() % 100; 
        printf("%d ", number[i]); 
    } 

    shellsort(number); 

    return 0; 
} 

void shellsort(int number[]) { 
    int i, j, k, gap, t; 

    gap = MAX / 2; 

    while(gap > 0) { 
        for(k = 0; k < gap; k++) { 
            for(i = k+gap; i < MAX; i+=gap) { 
                for(j = i - gap; j >= k; j-=gap) { 
                    if(number[j] > number[j+gap]) { 
                        SWAP(number[j], number[j+gap]); 
                    } 
                    else 
                        break; 
                } 
            } 
        } 

        printf("\ngap = %d:", gap); 
        for(i = 0; i < MAX; i++) 
            printf("%d ", number[i]); 
        printf("\n"); 

        gap /= 2; 
    } 
} 

35.Shaker 排序法 - 改良的气泡排序

说明
请看看之前介绍过的气泡排序法:

 for(i = 0; i < MAX-1 && flag == 1; i++) { 
    flag = 0; 
    for(j = 0; j < MAX-i-1; j++) { 
        if(number[j+1] < number[j]) { 
            SWAP(number[j+1], number[j]); 
            flag = 1; 
        } 
    } 
} 

事实上这个气泡排序法已经不是单纯的气泡排序了,它使用了旗标与右端左移两个方法来改进排序的效能,而Shaker排序法使用到后面这个观念进一步改良气泡排序法。
解法
在上面的气泡排序法中,交换的动作并不会一直进行至阵列的最后一个,而是会进行至MAX-i-1,所以排序的过程中,阵列右方排序好的元素会一直增加,使得左边排序的次数逐渐减少,如我们的例子所示:

排序前:95 27 90 49 80 58 6 9 18 50

27 90 49 80 58 6 9 18 50 [95] 95浮出
27 49 80 58 6 9 18 50 [90 95] 90浮出
27 49 58 6 9 18 50 [80 90 95] 80浮出
27 49 6 9 18 50 [58 80 90 95] …
27 6 9 18 49 [50 58 80 90 95] …
6 9 18 27 [49 50 58 80 90 95] …
6 9 18 [27 49 50 58 80 90 95]

方括号括住的部份表示已排序完毕,Shaker排序使用了这个概念,如果让左边的元素也具有这样的性质,让左右两边的元素都能先排序完成,如此未排序的元素会集中在中间,由于左右两边同时排序,中间未排序的部份将会很快的减少。

方法就在于气泡排序的双向进行,先让气泡排序由左向右进行,再来让气泡排序由右往左进行,如此完成一次排序的动作,而您必须使用left与right两个旗标来记录左右两端已排序的元素位置。

一个排序的例子如下所示:

排序前:45 19 77 81 13 28 18 19 77 11

往右排序:19 45 77 13 28 18 19 77 11 [81]
向左排序:[11] 19 45 77 13 28 18 19 77 [81]

往右排序:[11] 19 45 13 28 18 19 [77 77 81]
向左排序:[11 13] 19 45 18 28 19 [77 77 81]

往右排序:[11 13] 19 18 28 19 [45 77 77 81]
向左排序:[11 13 18] 19 19 28 [45 77 77 81]

往右排序:[11 13 18] 19 19 [28 45 77 77 81]
向左排序:[11 13 18 19 19] [28 45 77 77 81]

如上所示,括号中表示左右两边已排序完成的部份,当left > right时,则排序完成。

实作

C 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} 

void shakersort(int[]); 

int main(void) { 
    int number[MAX] = {0}; 
    int i;  

    srand(time(NULL)); 

系列好文,点击链接即可跳转

C语言经典算法-5
约瑟夫问题(Josephus Problem)、排列组合、格雷码(Gray Code)、产生可能的集合、m元素集合的n个元素子集

C语言经典算法-7
排序法 - 改良的选择排序、快速排序法(一)、快速排序法(二)、快速排序法(三)、合并排序法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/468639.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HTML5+CSS3小实例:具有悬停效果的3D闪耀动画

实例:具有悬停效果的3D闪耀动画 技术栈:HTML+CSS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, init…

Python 第三方库(Tiptop\Rembg)

Tiptop 简介 tiptop:命令行系统监控工具 Tiptop 安装 1、创建虚拟环境photemaker, 并激活photemaker. 2、安装tiptop, 执行如下指令: pip install tiptop 3、执行效果 Tiptop 命令执行遇到的问题 在CMD 控制台执行tiptop 命令&#xff0c;提示如下报错&#xff1a; ──…

【Docker篇】数据卷相关操作

文章目录 &#x1f388;前言&#x1f354;数据卷&#x1f6f8;操作命令⭐创建一个数据卷&#xff0c;并查看数据卷在宿主机的目录位置 &#x1f339;挂载数据卷 &#x1f388;前言 在前面文章的nginx案例中&#xff0c;修改nginx的html页面时&#xff0c;需要进入nginx内部。并…

【sequence进阶 config_db message_2024.03.14】

sequence进阶 sequence的仲裁 多个sequence发送给一个sequencer的情况&#xff0c;使用的两种方式&#xff1a; class virtual_seqence extends uvm_sequence;virtual task body();sub_sequene seq_0;sub_sequene seq_1;//第一种方式p_sequencer.apb_mst_sqr.set_arbitratio…

【机器学习】基于机器学习的分类算法对比实验

摘要 基于机器学习的分类算法对比实验 本论文旨在对常见的分类算法进行综合比较和评估&#xff0c;并探索它们在机器学习分类领域的应用。实验结果显示&#xff0c;随机森林模型在CIFAR-10数据集上的精确度为0.4654&#xff0c;CatBoost模型为0.4916&#xff0c;XGBoost模型为…

Android视角看鸿蒙第六课(module.json5中的各字段含义之pages)designWidth的用法

Android视角看鸿蒙第六课(module.json5中的各字段含义之pages&#xff09; 导读 前面几篇文章&#xff0c;我们陆续分析了entry->src->main下的module.json5中的各个字段的含义及作用。目前剩余pages和abilities两个字段&#xff0c;本篇文章一起来了解pages。 过程有错…

递归算法c++

主页:(*∇&#xff40;*) 咦,又好了~ xiaocr_blog 算法概述&#xff1a;递归算法是一种直接或者间接调用自身函数或者方法的算法。说简单了就是程序自身的调用。 算法实质&#xff1a;递归算法就是将原问题不断分解为规模缩小的子问题&#xff0c;然后递归调用方法来表示问题的…

[C语言]指针详解一、数组指针、二维数组传参、函数指针

一、数组指针 对一个数组&#xff0c;如果我们想要让一个指针指向这个数组&#xff0c;我们应该如何定义呢?我们知道一个数组定义本来就是一个指针&#xff0c;那为何要多定义一个数组指针呢?我们来看看下面这个代码就理解了 #include <stdio.h> int main() {int arr…

Docker与containerd:容器技术的双璧

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Docker幻想曲&#xff1a;从零开始&#xff0c;征服容器宇宙》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、前言 1、Docker和containerd的背景…

SpringBoot如何优雅实现远程调用

微服务之间的通信方式 常见的方式有两种&#xff1a; RPC——代表-dubbo HTTP——代表-SpringCloud 在SpringCloud中&#xff0c;默认是使用http来进行微服务的通信&#xff0c;最常用的实现形式有两种&#xff1a; RestTemplate Feign

深度学习_ResNet_5

ResNet学习目标 什么是ResNet为什么要引入ResNet&#xff1f;ResNet网络结构的特点利用ResNet完成图像分类 什么是ResNet&#xff1f; ResNet&#xff08;Residual Network&#xff09;是一种深度残差网络&#xff0c;由何凯明等人在2015年提出&#xff0c;是深度学习领域中一…

Gartner发布安全运营指南:迈向卓越安全运营的 5 项举措

顶级组织通常会实施一套通用的安全运营活动&#xff0c;以实现成熟&#xff0c;但是&#xff0c;他们在应对快速发展的威胁方面仍然面临挑战。安全和风险管理领导者可以利用这五项举措来加强他们的网络防御工作&#xff0c;同时促进安全投资的更大回报。 主要发现 旨在提升威胁…

【Java多线程】面试常考 —— JUC(java.util.concurrent) 的常见类

目录 1、JUC&#xff08;java.util.concurrent&#xff09; 1.1、Callable 接口 1.2、ReentrantLock 可重入锁 1.3、Semaphore 信号量 1.4、CountDownLatch 1、JUC&#xff08;java.util.concurrent&#xff09; 这是java中的一个包&#xff0c;存放着多线程编程中常见的…

电机学(笔记一)

磁极对数p&#xff1a; 直流电机的磁极对数是指电机定子的磁极对数&#xff0c;也等于电机电刷的对数。它与电机的转速和扭矩有直接关系。一般来说&#xff0c;极对数越多&#xff0c;电机转速越低&#xff0c;扭矩越大&#xff0c;适用于低速、高扭矩的场合&#xff1b;相反&…

MATLAB的使用(一)

一&#xff0c;MATLAB的编程特点 a,语法高度简化&#xff1b; b,脚本式解释型语言&#xff1b; c,针对矩阵的高性能运算&#xff1b; d,丰富的函数工具箱支持&#xff1b; e,通过matlab本体构建跨平台&#xff1b; 二&#xff0c;MATLAB的界面 工具栏:提供快捷操作编辑器…

HCIP的学习(2)

TCP----传输控制协议 是一种面向连接的可靠传输协议。 注&#xff1a;与我之前博客HCIA的学习&#xff08;2&#xff09;结合一起看 面向连接&#xff1a;数据传输前收发双方建立一条逻辑通路 特点&#xff1a; TCP是一种面向连接的传输协议每一条TCP连接有且只能存在两个端…

kafka2.x版本配置SSL进行加密和身份验证

背景&#xff1a;找了一圈资料&#xff0c;都是东讲讲西讲讲&#xff0c;最后我还没搞好&#xff0c;最终决定参考官网说明。 官网指导手册地址&#xff1a;Apache Kafka 先只看SSL安全机制方式。 Apache Kafka 允许客户端通过 SSL 进行连接。默认情况下&#xff0c;SSL 处于…

婴儿专用洗衣机哪个牌子比较好?热诚安利五大出类拔萃婴儿洗衣机

婴儿洗衣机可以用于单独清洗宝宝的衣物&#xff0c;可以有效避免了与大人衣物一起混洗带来的细菌交叉感染。毕竟&#xff0c;在婴儿吃奶或者接触其他材料时&#xff0c;其抵抗力是比较弱的&#xff0c;再加上普通洗衣机无法对婴儿的衣物进行有效的消毒处理&#xff0c;轻则会对…

SpringCache和redis区别?什么是SpringCache?

目录 一、Redis介绍1.1 Redis缓存1.2 redis缓存使用前提1.3 redis使用缓存的时机 二、实际操作案例2.1 常规准备工作2.2 引入配置redis2.2.1 引入redis的启动依赖2.2.2 在application.yml里面配置redis的地址信息等2.2.3 创建redisTemplate的配置类&#xff0c;指定键值序列化方…

探索区块链世界:从加密货币到去中心化应用

相信提到区块链&#xff0c;很多人会想到比特币这样的加密货币&#xff0c;但实际上&#xff0c;区块链技术远不止于此&#xff0c;它正在深刻地改变我们的生活和商业。 首先&#xff0c;让我们来简单了解一下什么是区块链。区块链是一种分布式数据库技术&#xff0c;它通过将…