【leetcode-53最大子数组和】

题目:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

详细讲解:

本题接的重点在「关键 1:理解题意」和「关键 2:如何定义子问题(如何定义状态)」和「最后再谈谈「无后效性」。

关键 1:理解题意

题目要我们找出和最大的连续子数组的值是多少,「连续」是关键字,连续很重要,不是子序列。

题目只要求返回结果,不要求得到最大的连续子数组是哪一个。这样的问题通常可以使用「动态规划」解决。

关键 2:如何定义子问题(如何定义状态)

设计状态思路:把不确定的因素确定下来,进而把子问题定义清楚,把子问题定义得简单。动态规划的思想通过解决了一个一个简单的问题,进而把简单的问题的解组成了复杂的问题的解。

友情提示:上面这句话大家姑且这么一看,脑子里有个印象,没有那么绝对。可能不同的人看会有不同的理解。如果我以后讲解的动态规划的设计思想与这里讲解的「设计状态思路」不一样的,我会再和大家说明。如果讲解有误导的地方,还请大家指出。,

我们 不知道和最大的连续子数组一定会选哪一个数,那么我们可以求出 所有 经过输入数组的某一个数的连续子数组的最大和。

例如,示例 1 输入数组是 [-2,1,-3,4,-1,2,1,-5,4] ,我们可以求出以下子问题:

子问题 1:经过 −2-2−2 的连续子数组的最大和是多少;
子问题 2:经过 111 的连续子数组的最大和是多少;
子问题 3:经过 −3-3−3 的连续子数组的最大和是多少;
子问题 4:经过 444 的连续子数组的最大和是多少;
子问题 5:经过 −1-1−1 的连续子数组的最大和是多少;
子问题 6:经过 222 的连续子数组的最大和是多少;
子问题 7:经过 111 的连续子数组的最大和是多少;
子问题 8:经过 −5-5−5 的连续子数组的最大和是多少;
子问题 9:经过 444 的连续子数组的最大和是多少。
一共 9 个子问题,这些子问题之间的联系并没有那么好看出来,这是因为 子问题的描述还有不确定的地方(这件事情叫做「有后效性」,我们在本文的最后会讲解什么是「无后效性」)。

例如「子问题 3」:经过 −3-3−3 的连续子数组的最大和是多少。

「经过 −3-3−3 的连续子数组」我们任意举出几个:

[-2,1,-3,4] ,−3-3−3 是这个连续子数组的第 3 个元素;
[1,-3,4,-1] ,−3-3−3 是这个连续子数组的第 2 个元素;
……
我们不确定的是:−3-3−3 是连续子数组的第几个元素。那么我们就把 −3-3−3 定义成连续子数组的最后一个元素。在新的定义下,我们列出子问题如下:

子问题 1:以 −2-2−2 结尾的连续子数组的最大和是多少;
子问题 2:以 111 结尾的连续子数组的最大和是多少;
子问题 3:以 −3-3−3 结尾的连续子数组的最大和是多少;
子问题 4:以 444 结尾的连续子数组的最大和是多少;
子问题 5:以 −1-1−1 结尾的连续子数组的最大和是多少;
子问题 6:以 222 结尾的连续子数组的最大和是多少;
子问题 7:以 111 结尾的连续子数组的最大和是多少;
子问题 8:以 −5-5−5 结尾的连续子数组的最大和是多少;
子问题 9:以 444 结尾的连续子数组的最大和是多少。
我们加上了「结尾的」,这些子问题之间就有了联系。我们单独看子问题 1 和子问题 2:

子问题 1:以 −2-2−2 结尾的连续子数组的最大和是多少;
以 −2-2−2 结尾的连续子数组是 [-2],因此最大和就是 −2-2−2。

子问题 2:以 111 结尾的连续子数组的最大和是多少;
以 111 结尾的连续子数组有 [-2,1] 和 [1] ,其中 [-2,1] 就是在「子问题 1」的后面加上 1 得到。−2+1=−1<1-2 + 1 = -1 < 1−2+1=−1<1 ,因此「子问题 2」 的答案是 111。

大家发现了吗,如果编号为 i 的子问题的结果是负数或者 000 ,那么编号为 i + 1 的子问题就可以把编号为 i 的子问题的结果舍弃掉(这里 i 为整数,最小值为 1 ,最大值为 8),这是因为:

一个数 a 加上负数的结果比 a 更小;
一个数 a 加上 000 的结果不会比 a 更大;
而子问题的定义必须以一个数结尾,因此如果子问题 i 的结果是负数或者 000,那么子问题 i + 1 的答案就是以 nums[i] 结尾的那个数。
因为我们把子问题定义的更清楚,子问题之间的联系就容易观察到。这是我们定义子问题、定义状态的经验。

接下来我们按照编写动态规划题解的步骤,把「状态定义」「状态转移方程」「初始化」「输出」「是否可以空间优化」全都写出来。

定义状态(定义子问题)
dp[i]:表示以 nums[i] 结尾 的 连续 子数组的最大和。

说明:「结尾」和「连续」是关键字。

状态转移方程(描述子问题之间的联系)
根据状态的定义,由于 nums[i] 一定会被选取,并且以 nums[i] 结尾的连续子数组与以 nums[i - 1] 结尾的连续子数组只相差一个元素 nums[i] 。

假设数组 nums 的值全都严格大于 000,那么一定有 dp[i] = dp[i - 1] + nums[i]。

可是 dp[i - 1] 有可能是负数,于是分类讨论:

如果 dp[i - 1] > 0,那么可以把 nums[i] 直接接在 dp[i - 1] 表示的那个数组的后面,得到和更大的连续子数组;
如果 dp[i - 1] <= 0,那么 nums[i] 加上前面的数 dp[i - 1] 以后值不会变大。于是 dp[i] 「另起炉灶」,此时单独的一个 nums[i] 的值,就是 dp[i]。
以上两种情况的最大值就是 dp[i] 的值,写出如下状态转移方程:


 
记为「状态转移方程 1」。

状态转移方程还可以这样写,反正求的是最大值,也不用分类讨论了,就这两种情况,取最大即可,因此还可以写出状态转移方程如下:


记为「状态转移方程 2」。

友情提示:求解动态规划的问题经常要分类讨论,这是因为动态规划的问题本来就有「最优子结构」的特点,即大问题的最优解通常由小问题的最优解得到。因此我们在设计子问题的时候,就需要把求解出所有子问题的结果,进而选出原问题的最优解。

思考初始值
dp[0] 根据定义,只有 1 个数,一定以 nums[0] 结尾,因此 dp[0] = nums[0]。

思考输出
注意:

这里状态的定义不是题目中的问题的定义,不能直接将最后一个状态返回回去;

这里状态的定义不是题目中的问题的定义,不能直接将最后一个状态返回回去;

这里状态的定义不是题目中的问题的定义,不能直接将最后一个状态返回回去。

重要的事情说三遍,有时候写东西写得多了,怕读者看不到重点,所以会想方设法进行强调,一句话翻来覆去反复说。我以前和一个在新东方当英语老师的朋友交流过,这样的效果最好。大家可以理解为职业病,我们更多是想要照顾到新手朋友们。大佬要是觉得我讲得啰嗦了,还请忽略。

简单的动态规划问题,很有可能问的问题就可以设计成为子问题,复杂的动态规划问题就没有那么容易看出子问题应该如何设计了,这需要一定的解决问题的经验。

这个问题的输出是把所有的 dp[0]、dp[1]、……、dp[n - 1] 都看一遍,取最大值。 同样的情况也适用于「力扣」第 300 题:「最长上升子序列」(以后我们有空,再把这道题拿出来再讲一遍,超级超级重要的一道动态规划问题)。

public class Solution {

    public int maxSubArray(int[] nums) {
        int len = nums.length;
        // dp[i] 表示:以 nums[i] 结尾的连续子数组的最大和
        int[] dp = new int[len];
        dp[0] = nums[0];

        for (int i = 1; i < len; i++) {
            if (dp[i - 1] > 0) {
                dp[i] = dp[i - 1] + nums[i];
            } else {
                dp[i] = nums[i];
            }
        }

        // 也可以在上面遍历的同时求出 res 的最大值,这里我们为了语义清晰分开写,大家可以自行选择
        int res = dp[0];
        for (int i = 1; i < len; i++) {
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/462294.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java关于物联网消息引擎:EMQ X

1.背景 1、5G 时代&#xff0c;万物互联 随着5G的到来&#xff0c;万物互联已经成为现实&#xff0c;物联网行业得以蓬勃发展&#xff0c;催生了很多的应用&#xff0c;比如&#xff1a;物联网pass平台&#xff0c;车联网&#xff0c;面向云平台的IOT-Hub&#xff0c;NB-IoT蜂…

更安全的C gets()和str* 以及fgets和strcspn的用法

#include <stdio.h>int main() {char *str;gets(str);puts(str);return(0); }可以说全是错误 首先char *str没有指向一个分配好的地址&#xff0c;就直接读入&#xff0c;危险 ps: 怎么理解char *str "Hello World" 是将一个存储在一个只读的数据段中字符串常…

进程学习--02

在C语言中&#xff0c;一般使用fork函数开辟进程&#xff0c;这个函数开辟进程后会返回一个进程号&#xff0c;在子进程中会返回0&#xff0c;在父进程中会返回子进程的进程号。 int main(){int ret fork();if(ret<0){fprintf(stderr, "pid error");exit(-1);}e…

【嵌入式实践】【芝麻】【硬件篇-4】从0到1给电动车添加指纹锁:IO电路简单介绍

0. 前言 该项目是基于stm32F103和指纹模块做了一个通过指纹锁控制电动车的小工具。支持添加指纹、删除指纹&#xff0c;电动车进入P档等待时计时&#xff0c;计时超过5min则自动锁车&#xff0c;计时过程中按刹车可中断P档状态&#xff0c;同时中断锁车计时。改项目我称之为“芝…

linux最佳入门(笔记)

1、内核的主要功能 2、常用命令 3、通配符&#xff1a;这个在一些启动文件中很常见 4、输入/输出重定向 意思就是将结果输出到别的地方&#xff0c;例如&#xff1a;ls标准会输出文件&#xff0c;默认是输出到屏幕&#xff0c;但是用>dir后&#xff0c;是将结果输出到dir文…

基于springboot+vue实现艺术水平考级报名系统【项目源码+论文说明】计算机毕业设计

基于springbootvue实现艺术水平考级报名系统演示 摘要 本次毕业设计基于SpringBoot框架开发了一款艺术水平考级报名管理系统。该系统为考生提供了线上报名、准考证管理等核心功能&#xff0c;并为系统管理员提供了在线发布考试信息、对报名考生进行审核等管理功能。通过该系统…

一文搞懂PCL中自定义点云类型的构建与函数使用

上周猛男快乐开发时遇到个bug&#xff0c;要用pcl的函数对自定义的点云进行处理。一起解决问题时遇到了很多问题&#xff0c;解决后整理出来分享给各位参考&#xff0c;以免踩一样的坑&#x1f60a;。文章中自定义的点我用PointT来表示&#xff0c;自定义点云一般指的是pcl::Po…

SaaS智慧校园管理平台,智能电子班牌源码,智慧校园建设方案

电子班牌是什么&#xff1f; 电子班牌是一种智能交互终端&#xff0c;电子班牌可以解决“走班教学”考勤管理问题&#xff0c;将大数据、物联网和人工智能等新兴技术和教学管理工作融合&#xff0c;提升学校管理水平和管理效率。 电子班牌是在学校各教室门口安装高清可视化和具…

实验室管理系统 |基于springboot框架+ Mysql+JSP技术+Tomcat的实验室管理系统 设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 用户后台功能模块 用户后台管理 管理员功能登录前台功能效果图 系统功能设计 数据库E-R图设计 lunw…

论文阅读FCN-Transformer Feature Fusion for PolypSegmentation

本文提出了一种名为Fully Convolutional Branch-TransFormer (FCBFormer)的图像分割框架。该架构旨在结合Transformer和全卷积网络&#xff08;FCN&#xff09;的优势&#xff0c;以提高结肠镜图像中息肉的检测和分类准确性。 1&#xff0c;框架结构&#xff1a; 模型采用双分…

专题二 - 滑动窗口 - leetcode 904. 水果成篮 | 中等难度

leetcode 904. 水果成篮 leetcode 904. 水果成篮 | 中等难度1. 题目详情1. 原题链接2. 基础框架 2. 解题思路1. 题目分析2. 算法原理3. 时间复杂度 3. 代码实现4. 知识与收获 leetcode 904. 水果成篮 | 中等难度 1. 题目详情 你正在探访一家农场&#xff0c;农场从左到右种植…

【SQL Server】实验六 数据安全性

1 实验目的 掌握用户管理的基本方法&#xff0c;包括创建用户、删除用户和设置用户密码。掌握用户授权和回收权限的基本方法。掌握系统级权限和对象级权限的授权和回收方法掌握角色的使用方法 2 实验内容 2.1 掌握用户管理的基本使用方法 创建用户&#xff08;带密码&#…

RTP 控制协议 (RTCP) 反馈用于拥塞控制

摘要 有效的 RTP 拥塞控制算法&#xff0c;需要比标准 RTP 控制协议(RTCP)发送方报告(SR)和接收方报告(RR)数据包提供的关于数据包丢失、定时和显式拥塞通知 (ECN) 标记的更细粒度的反馈。 本文档描述了 RTCP 反馈消息&#xff0c;旨在使用 RTP 对交互式实时流量启用拥塞控制…

【每日力扣】235. 二叉搜索树的最近公共祖先与39. 组合总和问题描述

&#x1f525; 个人主页: 黑洞晓威 &#x1f600;你不必等到非常厉害&#xff0c;才敢开始&#xff0c;你需要开始&#xff0c;才会变的非常厉害。 235. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义…

简易版 RPC 框架实现 2.0 -netty实现

这一篇理解如果有难度&#xff0c;可能对netty不是很理解&#xff0c; 可以关注我netty专栏&#xff0c;还有另外一篇&#xff1a; 用 Netty 自己实现简单的RPC&#xff0c; 这一篇是学习netty的时候写的&#xff0c;更倾向于分析netty相关的知识&#xff0c; 今天我是学习dubb…

Delphi7应用教程学习1.3【练习题目】:文本及悬停文字的显示

这个例子主要用到了btn的Hint 属性&#xff0c;Hint是提示的意思。 还有Delphi7还是很好用的&#xff0c;改变了的属性是粗体&#xff0c;默认没有改变的属性为细体。

插入排序:一种简单而有效的排序算法

插入排序&#xff1a;一种简单而有效的排序算法 一、什么是插入排序&#xff1f;二、插入排序的步骤三、插入排序的C语言实现四、插入排序的性能分析五、插入排序的优化六、总结 在我们日常生活和工作中&#xff0c;排序是一种非常常见的操作。比如&#xff0c;我们可能需要对一…

B端界面又丑又乱,也不会总结规范,来,我给5个规范模板,照着学

发5个别人总结的规范&#xff0c;一定会对你的B端系统改进&#xff0c;有帮助的。

TSINGSEE青犀AI烟火识别等算法打造电瓶车消防安全解决方案

一、背景分析 根据国家消防救援局的统计&#xff0c;2023年全国共接报电动自行车火灾2.1万起&#xff0c;相比2022年上升17.4%&#xff0c;电动自行车火灾安全隐患问题不容忽视。 电瓶车火情主要问题和原因&#xff1a; 电瓶车/电池质量良莠不齐用户安全意识薄弱&#xff0c…

虚拟机NAT模式配置

注意这里IP要和网关在同一网段&#xff0c;且虚拟机默认网关末尾为.2&#xff08;如果默认网关配置为.1会与宿主机冲突&#xff0c;导致无法ping通外网&#xff09; 点击NAT模式下的NAT设置即可查看默认网关 这里的网关可以理解为主机与虚拟机交互的入口