RTOS 低功耗设计原理及实现

RTOS 低功耗设计原理及实现


在这里插入图片描述


文章目录

    • RTOS 低功耗设计原理及实现
    • 👨‍🏫前言
    • 👨‍🔬Tickless Idle Mode 的原理及实现
    • 👨‍🚀Tickless Idle Mode 的软件设计原理
    • 👨‍💻Tickless Idle Mode 的实现
    • 👨‍⚖️结尾


👨‍🏫前言


目前, 越来越多的嵌入式产品在开发中使用 RTOS 作为软件平台, 同时,开发中对低功耗的要求也越来越高, 本文会讨论一下如何在 RTOS 中处理微控制器的低功耗特性。

应用中使用的 RTOS 一般采用基于时间片轮转的抢占式任务调度机制,一般的低功耗设计思路如下:

  • 当 Idle 任务运行时,进入低功耗模式;
  • 在适当的条件下,通过中断或者外部事件唤醒 MCU

但是, 从第二点可以看出,每次当 OS 系统定时器产生中断时,也会将 MCU 从低功耗模式中唤醒,而频繁的进入低功耗模式/从低功耗模式中唤醒会使得 MCU 无法进入深度睡眠,对低功耗设计而言也是不合理的。

在 FreeRTOS 中给出了一种低功耗设计模式 —— Tickless Idle Mode, 这个方法可以让 MCU 更长的时间处于低功耗模式。

🌸🌸🌸🌷🌷🌷💐💐💐🌷🌷🌷🌸🌸🌸

👨‍🔬Tickless Idle Mode 的原理及实现


在这里插入图片描述

上图是任务调度示意图,横轴是时间轴, T1, T2, T3, T4 是 RTOS 的时间片基准,有四个任务分别是 TaskA,TaskB,TaskC,TaskD:

  • Task A,周期性任务
  • Task B, 周期性任务
  • Task C,突发性任务
  • Task D,周期性任务

从图中可以看出在四个任务进行调度之间,会有四次空闲期间(此时 RTOS 会调度 Idle 任务运行, 软件设计的目标应该是尽可能使 MCU 在 Idle 任务运行时处于低功耗模式)。

1️⃣Idle1
Idle 任务运行期间,会产生一次系统时钟滴答,此时会唤醒 MCU,唤醒后 MCU 又会进入低功耗模式, 这次唤醒是无意义的。期望使 MCU 在 Idle1 期间一直处于低功耗模式, 因此适当调整系统定时器中断使得 T1 时不触发系统时钟中断, 中断触发点设置为 Task B 到来时。

2️⃣Idle2
Task C 在系统滴答到达前唤醒 MCU(外部事件),MCU 可以在 Idle2 中可以一直处于低功耗模式;

3️⃣Idle3
与 Idle2 情况相同,但 Idle3 时间很短,如果这个时间很短,那么进入低功耗模式的意义并不大,因此在进入低功耗模式时软件应该添加策略;

4️⃣Idle4
与 Idle1 情况相同。

🐾🐾🐾🐾🐾🐾🐾🐾🐾🐾🐾🐾

👨‍🚀Tickless Idle Mode 的软件设计原理


Tickless Idle Mode 的设计思想在于尽可能地在 MCU 空闲时使其进入低功耗模式。从上述情景中可以看出软件设计需要解决的问题有:

  • 合理地进入低功耗模式(避免频繁使 MCU 在低功耗模式和运行模式下进行不必要的切换);RTOS 的系统时钟源于硬件的某个周期性定时器(Cortex-M 系列内核多数采用 SysTick),RTOS 的任务调度器可以预期到下一个周期性任务(或者定时器任务) 的触发时间,如上文所述,调整系统时钟定时器中断触发时间,可以避免 RTOS 进入不必要的时间中断,从而更长的时间停留在低功耗模式中,此时 RTOS 的时钟不再是周期的而是动态的(在原有的时钟基准时将不再产生中断,即 Tickless)。
  • 当 MCU 被唤醒时,通过某种方式为系统时钟提供补偿。MCU 可能被两种情况所唤醒,动态调整过的系统时钟中断或者突发性的外部事件,无论是哪一种情况,都可以通过运行在低功耗模式下的某种定时器来计算出 MCU 处于低功耗模式下的时间,在 MCU 唤醒后对系统时间进行软件补偿;
  • 软件实现时,要根据具体的应用情景和 MCU 低功耗特性来处理问题。尤其是 MCU 的低功耗特性,不同 MCU 处于不同的低功耗模式下所能使用的外设(主要是定时器) 是不同的, RTOS 的系统时钟可以进行适当的调整。
🌻🌻🌻🌼🌼🌼🌺🌺🌺🌼🌼🌼🌻🌻🌻

👨‍💻Tickless Idle Mode 的实现


这里以 STM32F407 系列的 MCU 为例, 首先需要明确的是 MCU 的低功耗模式, F407 有 3 种低功耗模式:Sleep,Stop, Standby, 在 RTOS 平台时, SRAM 和寄存器的数据不应丢失, 此外需要一个定时器为 RTOS 提供系统时钟, 这里选择 Sleep 模式下进行实现。

在这里插入图片描述

1. 使能

#define configUSE_TICKLESS_IDLE    1

2. 空闲任务(RTOS 空闲时自动调用)

/* Idle 任务 */
void prvIdleTask( void *pvParameters )
{
  for( ; ; )
  {
   ...
   #if ( configUSE_TICKLESS_IDLE != 0 )
   {
    TickType_t xExpectedIdleTime;
    
    /* 用户策略以决定是否需要进入 Tickless Mode */
    xExpectedIdleTime = prvGetExpectedIdleTime();
    
    if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
    {
     vTaskSuspendAll(); // 挂起调度器
     {
      configASSERT( xNextTaskUnblockTime >= xTickCount );
      xExpectedIdleTime = prvGetExpectedIdleTime();
      if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
        {
       /* 用户函数接口 */
       
       /* 1. 进入低功耗模式和如何退出低功耗模式 */
       
       /* 2. 系统时间补偿 */
       
       portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
      }
     } 
     (void) xTaskResumeAll(); // 恢复调度器
    }
   }
   #endif /* configUSE_TICKLESS_IDLE */
   ...
  }
}

3. 低功耗模式处理(根据 MCU 的低功耗模式编写代码)

void vPortSuppressTicksAndSleep( portTickType xExpectedIdleTime )
{
  unsigned long ulReloadValue, ulCompleteTickPeriods,
  ulCompletedSysTickDecrements;
  portTickType xModifiableIdleTime;
  
  /* 最长睡眠时间不可以超过定时器的最大定时值 */
  /* 通过调整定时器的时间基准可以获得更理想的最大定时值 */
  if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
  {
   xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
  }
  
  /* 停止 SysTick */
  portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT |
  portNVIC_SYSTICK_INT_BIT;
  
  /* 计算唤醒时的系统时间,用于唤醒后的系统时间补偿 */
  ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) );
  
  if( ulReloadValue > ulStoppedTimerCompensation )
  {
   ulReloadValue -= ulStoppedTimerCompensation;
  }
  __disable_interrupt();
  
  /* 确认下是否可以进入低功耗模式 */
  if( eTaskConfirmSleepModeStatus() == eAbortSleep )
  {
   /* 不可以,重新启动系统定时器 */
   portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG;
   portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT |
   portNVIC_SYSTICK_INT_BIT |
   portNVIC_SYSTICK_ENABLE_BIT;
   portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
   __enable_interrupt();
  }
  else
  {
    /* 可以进入低功耗模式 */
   /* 保存时间补偿,重启系统定时器 */
   portNVIC_SYSTICK_LOAD_REG = ulReloadValue;
   portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
   portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT |
   portNVIC_SYSTICK_INT_BIT |
   portNVIC_SYSTICK_ENABLE_BIT;
   
   /* 进入低功耗模式,可以通过 configPRE_SLEEP_PROCESSING 函数进行低功耗模式下时钟及外设的配置*/
   xModifiableIdleTime = xExpectedIdleTime;
   configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
   if( xModifiableIdleTime > 0 )
   {
    __DSB();
    __WFI();
    __ISB();
   }
  
   /* 退出低功耗模式 */
   configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
   portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT |
   portNVIC_SYSTICK_INT_BIT;
   __disable_interrupt()
   __enable_interrupt();
   
   /*唤醒有两种情况:系统定时器或者外部事件(中断) */
   if((portNVIC_SYSTICK_CTRL_REG & portNVIC_SYSTICK_COUNT_FLAG_BIT) != 0)
   {
    /* 系统定时器唤醒,时间补偿 */
    unsigned long ulCalculatedLoadValue;
    ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL )( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG );
    
    if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) ||  ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) )
    {
     ulCalculatedLoadValue = (ulTimerCountsForOneTick - 1UL);
    }
    portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue;
    ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
   }
   else
   {
    /* 外部事件(中断)唤醒 */
    ulCompletedSysTickDecrements = ( xExpectedIdleTime *
    ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG;
    ulCompleteTickPeriods = ulCompletedSysTickDecrements /
    ulTimerCountsForOneTick;
    portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1 ) *
    ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements;
   }
   /* 重启 Systick,调整系统定时器中断为正常值 */
   portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL;
   portENTER_CRITICAL();
   {
    portNVIC_SYSTICK_CTRL_REG = portNVIC_SYSTICK_CLK_BIT |
    portNVIC_SYSTICK_INT_BIT |
    portNVIC_SYSTICK_ENABLE_BIT;
    vTaskStepTick( ulCompleteTickPeriods );
    portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL;
   }
   portEXIT_CRITICAL();
  }
}

👨‍⚖️结尾


STM32 家族中拥有不同的系列,特别是专为低功耗应用设计的 L 系列,为其设计 RTOS 低功耗特性实现时可以有更多的实现方式(例,某种模式下内核停止运行, 此时可以使用外部定时器或者 RTC 来代替 Systick 作为系统定时器)。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/46199.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jmap-JVM(十六)

上篇文章说了ZGC是jdk11加入的&#xff0c;他是未来jvm垃圾收集器的奠定者&#xff0c;满足TB级别内存处理&#xff0c;STW时间保持在10ms以下。 Jmap 我们可以先通过jmap -histo 进程ip 来查看&#xff0c;但是这样看不太清晰&#xff0c;我们可以用这行命令生成一个文件&…

WebDAV之π-Disk派盘+ WinSCP

WinSCP是一个免费的开源文件传输应用程序&#xff0c;它使用文件传输协议&#xff0c;安全外壳文件传输协议和安全复制协议来进行纯文件或安全文件传输。该应用程序旨在与Windows一起使用&#xff0c;并支持常见的Windows桌面功能&#xff0c;例如拖放文件&#xff0c;跳转列表…

设计模式结构型——代理模式

目录 代理模式的用途 代理模式的实现 静态代理 JDK动态代理 CGLIB动态代理 代理模式的特点 与其他模式比较 代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许通过创建一个代理对象来间接访问原始对象。代理模式的核心思想是将对目…

预科C语言

1.day10 1、perror() 原型&#xff1a;void perror(const char *s); 根据errno呈现错误信息 perror("malloc error"); malloc error: Cannot allocate memory 2、多文件编译 .c ---预处理&#xff08;.i -E&#xff09;---汇编&#xff08;.s -S&#xf…

Visual Studio Code Python 扩展中的包管理

排版&#xff1a;Alan Wang Python 凭借其简单的语法和强大的库&#xff0c;目前已成为最流行的编程语言之一&#xff0c;也是最适合那些刚接触编程的人们的语言。但是&#xff0c;随着项目复杂性和规模的增长&#xff0c;管理依赖项的复杂性也会增加。当新用户不断承接更成熟的…

探秘MySQL底层架构:设计与实现流程

前言 Mysql&#xff0c;作为一款优秀而广泛使用的数据库管理系统&#xff0c;对于众多Java工程师来说&#xff0c;几乎是日常开发中必不可少的一环。无论是存储海量数据&#xff0c;还是高效地检索和管理数据&#xff0c;Mysql都扮演着重要的角色。然而&#xff0c;除了使用My…

《golang设计模式》第一部分·创建型模式-01-单例模式(Singleton)

文章目录 1. 概述1.1 目的1.2 实现方式 2. 代码示例2.1 设计2.2 代码 1. 概述 1.1 目的 保证类只有一个实例有方法能让外部访问到该实例 1.2 实现方式 懒汉式 在第一次调用单例对象时创建该对象&#xff0c;这样可以避免不必要的资源浪费 饿汉式 在程序启动时就创建单例对象…

Spring中事务失效的8中场景

1. 数据库引擎不支持事务 这里以 MySQL为例&#xff0c;MyISAM引擎是不支持事务操作的&#xff0c;一般要支持事务都会使用InnoDB引擎&#xff0c;根据MySQL 的官方文档说明&#xff0c;从MySQL 5.5.5 开始的默认存储引擎是 InnoDB&#xff0c;之前默认的都是 MyISAM&#xff…

数据结构--线性表2-1

目录 一、线性结构的定义 二、线性表的表示 三、顺序表的实现&#xff08;或操作&#xff09; 1、修改&#xff1a; 2、插入&#xff1a; 四、顺序表的运算效率分析&#xff1a;时间效率分析&#xff1a; 一、线性结构的定义 若结构时非空有限集&#xff0c;则有且仅有一个…

【MySQL】库和表的操作

目录 一、库的操作 1.1创建数据库 1.2创建数据库案例 1.3字符集和校验规则 &#xff08;1&#xff09;查看系统默认字符集以及校验规则 &#xff08;2&#xff09;查看数据库支持的字符集 &#xff08;3&#xff09;查看数据库支持的字符集校验规则 &#xff08;4&…

Layui下拉多选框

标题xmSelect插件&#xff1a; xmSelect文档 下载Layui第三方插件 下拉多选框效果&#xff1a; 实现方法(例子)&#xff1a; 将xmSelect插件的xm-select.js文件引入到layui中&#xff1a; <script src"public/js/xm-select/xm-select.js"></script> …

Ubuntu搭建Samba服务-学习记录

文章目录 Ubuntu安装Samba流程Samba配置文件Samba添加账户配置文件修改Samba服务控制设置开机自动启动通过systemctl 启动服务通过 rc.local 启动 Windows访问参考链接 当前文章仅用于记录&#xff0c;在 Ubuntu中安装使用Samba&#xff0c;在Windows访问 系统环境&#xff1a;…

数据库管理-第九十四期 19c OCM之路-第四堂(02)(20230725)

第九十四期 19c OCM之路-第四堂&#xff08;02&#xff09;&#xff08;20230725&#xff09; 第四堂继续&#xff01; 考点3&#xff1a;SQL statement tuning SQL语句调优 收集Schema统计信息 exec dbms_stats.gather_schems_stats(HR);开启制定表索引监控 create index…

Android性能优化之游戏的Theme背景图

近期&#xff0c;对游戏的内存优化&#xff0c;通过内存快照发现&#xff0c;某个Activity的theme背景图 占用3M 多。考虑着手对齐进行优化。 问题 查看游戏中的内存快照&#xff0c;发现有一个图片bitmap 占用3M 多&#xff0c;设置在Activity的背景中&#xff1a; 查看Phon…

scrcpy2.0+实时将手机画面显示在屏幕上并用鼠标模拟点击2023.7.26

想要用AI代打手游&#xff0c;除了模拟器登录&#xff0c;也可以直接使用第三方工具Scrcpy&#xff0c;来自github&#xff0c;它是一个开源的屏幕镜像工具&#xff0c;可以在电脑上显示Android设备的画面&#xff0c;并支持使用鼠标进行交互。 目录 1. 下载安装2. scrcpy的高级…

使用serverless实现从oss下载文件并压缩

公司之前开发一个网盘系统, 可以上传文件, 打包压缩下载文件, 但是在处理大文件的时候, 服务器遇到了性能问题, 主要是这个项目是单机部署.......(离谱), 然后带宽只有100M, 现在用户比之前多很多, 然后所有人的压缩下载请求都给到这一台服务器了, 比如多个人下载的时候带宽问…

python与深度学习(四):ANN和fashion_mnist二

目录 1. 说明2. fashion_mnist的ANN模型测试2.1 导入相关库2.2 加载数据和模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章训练的模型进行测…

CASAtomic原子操作详解

一、CAS&#xff08;Compare And Swap&#xff09; 1、CAS介绍 CAS原理&#xff1a;假设有三个值&#xff0c;E&#xff08;旧值&#xff09;、U&#xff08;需要更新的值&#xff09;、V&#xff08;内存中真实的值&#xff09;&#xff0c;具体参照下图&#xff1a; 作用&a…

2023第五届全国生物资源提取与应用创新论坛即将举办

01、会议背景 为进一步加强生物资源提取行业交流与合作&#xff0c;促进业“产学研用”融合&#xff0c;提升行业科技创新水平&#xff0c;增强行业国际竞争力&#xff0c;中国生物发酵产业协会、浙江科技学院、浙江工业职业技术学院、浙江省农业生物资源生化制造协同创新中心&…

GFLv2 论文学习

1. 解决了什么问题&#xff1f; 预测定位质量对于目标检测很重要&#xff0c;在 NMS 时它能提供准确的得分排序&#xff0c;提高模型的表现。现有方法都是通过分类或回归的卷积特征来预测定位质量得分。 2. 提出了什么方法&#xff1f; 受到 GFLv1 的 general distribution …