python与深度学习(四):ANN和fashion_mnist二

目录

  • 1. 说明
  • 2. fashion_mnist的ANN模型测试
    • 2.1 导入相关库
    • 2.2 加载数据和模型
    • 2.3 设置保存图片的路径
    • 2.4 加载图片
    • 2.5 图片预处理
    • 2.6 对图片进行预测
    • 2.7 显示图片
  • 3. 完整代码和显示结果
  • 4. 多张图片进行测试的完整代码以及结果

1. 说明

本篇文章是对上篇文章训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。

2. fashion_mnist的ANN模型测试

2.1 导入相关库

在这里导入需要的第三方库如cv2,如果没有,则需要自行下载。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import fashion_mnist

2.2 加载数据和模型

把fashion_mnist数据集进行加载,并且把训练好的模型也加载进来。

# fashion数据集列表
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# 加载fashion数据
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
# 加载ann_mnist.h5文件,重新生成模型对象
recons_model = keras.models.load_model('ann_fashion.h5')

2.3 设置保存图片的路径

将数据集的某个数据以图片的形式进行保存,便于测试的可视化。
在这里设置图片存储的位置。

# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test100.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[100]).save(test_file_path)

在书写完上述代码后,需要在代码的当前路径下新建一个imgs的文件夹用于存储图片,如下。
在这里插入图片描述
执行完上述代码后就会在imgs的文件中可以发现多了一张图片,如下(下面测试了很多次)。
在这里插入图片描述

2.4 加载图片

采用cv2对图片进行加载,下面最后一行代码取一个通道的原因是用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是单通道的,因此取单通道。

# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(28,28)
test_img = cv2.resize(test_img, (28, 28))
# 取单通道值
test_img = test_img[:, :, 0]

2.5 图片预处理

对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。

# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 784)

2.6 对图片进行预测

将图片输入给训练好我的模型并且进行预测。
预测的结果是10个概率值,所以需要进行处理, np.argmax()是得到概率值最大值的序号,也就是预测的数字。

# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
y_pre_pro = tf.nn.softmax(y_pre_pro)  # 因为模型搭建的时候,输出层没有激活函数softmax,因此这里需要使用softmax
# 哪一类数字
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别:', class_names[class_id])
text = str(class_names[class_id])

2.7 显示图片

对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。

# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

3. 完整代码和显示结果

以下是完整的代码和图片显示结果。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import fashion_mnist
# fashion数据集列表
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# 加载fashion数据
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
# 加载ann_mnist.h5文件,重新生成模型对象
recons_model = keras.models.load_model('ann_fashion.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test100.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[100]).save(test_file_path)
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(28,28)
test_img = cv2.resize(test_img, (28, 28))
# 取单通道值
test_img = test_img[:, :, 0]
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 784)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
y_pre_pro = tf.nn.softmax(y_pre_pro)  # 因为模型搭建的时候,输出层没有激活函数softmax,因此这里需要使用softmax
# 哪一类数字
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别:', class_names[class_id])
text = str(class_names[class_id])
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 0s 224ms/step
test.png的预测概率: tf.Tensor(
[[1.3604405e-02 4.0369225e-04 4.1837210e-04 9.8322290e-01 1.0399223e-04
  1.5519042e-07 2.2383246e-03 8.2791501e-10 8.1014296e-06 1.0210023e-08]], shape=(1, 10), dtype=float32)
test.png的预测概率: tf.Tensor(0.9832229, shape=(), dtype=float32)
test.png的所属类别: Dress

在这里插入图片描述

4. 多张图片进行测试的完整代码以及结果

为了测试更多的图片,引入循环进行多次测试,效果更好。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import fashion_mnist
# fashion数据集列表
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# 加载fashion_mnist数据
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
# 加载ann_fashion.h5文件,重新生成模型对象
recons_model = keras.models.load_model('ann_fashion.h5')

prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):
    path1 = input("input the test picture path:")
    # 创建图片保存路径
    test_file_path = os.path.join(sys.path[0], 'imgs', path1)
    # 存储测试数据的任意一个
    num = int(input("input the test picture num:"))
    Image.fromarray(x_test[num]).save(test_file_path)
    # 加载本地test.png图像
    image = cv2.imread(test_file_path)
    # 复制图片
    test_img = image.copy()
    # 将图片大小转换成(28,28)
    test_img = cv2.resize(test_img, (28, 28))
    # 取单通道值
    test_img = test_img[:, :, 0]
    # 预处理: 归一化 + reshape
    new_test_img = (test_img/255.0).reshape(1, 784)
    # 预测
    y_pre_pro = recons_model.predict(new_test_img, verbose=1)
    y_pre_pro = tf.nn.softmax(y_pre_pro)  # 因为模型搭建的时候,输出层没有激活函数softmax,因此这里需要使用softmax
    # 哪一类数字
    class_id = np.argmax(y_pre_pro, axis=1)[0]
    print('test.png的预测概率:', y_pre_pro)
    print('test.png的预测概率:', y_pre_pro[0, class_id])
    print('test.png的所属类别:', class_names[class_id])
    text = str(class_names[class_id])
    # # 显示
    cv2.namedWindow('img', 0)
    cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
    cv2.imshow('img', image)
    cv2.waitKey()
    cv2.destroyAllWindows()

下面的test picture num指的是数据集中该数据的序号(0-59999),并不是值实际的数字。

```python
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
input the number of test picture :2
input the test picture path:71.jpg
input the test picture num:2
1/1 [==============================] - 0s 176ms/step
test.png的预测概率: tf.Tensor(
[[5.1171044e-20 1.0000000e+00 1.0369056e-20 3.2896547e-11 1.0296870e-15
  3.9021204e-35 1.4200611e-16 0.0000000e+00 3.1272054e-24 3.7608996e-36]], shape=(1, 10), dtype=float32)
test.png的预测概率: tf.Tensor(1.0, shape=(), dtype=float32)
test.png的所属类别: Trouser

在这里插入图片描述

input the test picture path:72.jpg
input the test picture num:3
1/1 [==============================] - 0s 32ms/step
test.png的预测概率: tf.Tensor(
[[2.8700330e-18 1.0000000e+00 5.2245058e-19 7.1288919e-10 3.2442375e-14
  2.9884308e-32 3.5976920e-15 2.7016272e-38 3.2129908e-22 3.0112130e-33]], shape=(1, 10), dtype=float32)
test.png的预测概率: tf.Tensor(1.0, shape=(), dtype=float32)
test.png的所属类别: Trouser

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/46176.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CASAtomic原子操作详解

一、CAS(Compare And Swap) 1、CAS介绍 CAS原理:假设有三个值,E(旧值)、U(需要更新的值)、V(内存中真实的值),具体参照下图: 作用&a…

2023第五届全国生物资源提取与应用创新论坛即将举办

01、会议背景 为进一步加强生物资源提取行业交流与合作,促进业“产学研用”融合,提升行业科技创新水平,增强行业国际竞争力,中国生物发酵产业协会、浙江科技学院、浙江工业职业技术学院、浙江省农业生物资源生化制造协同创新中心&…

GFLv2 论文学习

1. 解决了什么问题? 预测定位质量对于目标检测很重要,在 NMS 时它能提供准确的得分排序,提高模型的表现。现有方法都是通过分类或回归的卷积特征来预测定位质量得分。 2. 提出了什么方法? 受到 GFLv1 的 general distribution …

Mysql 主从复制、读写分离

目录 一、前言: 二、主从复制原理 2.1 MySQL的复制类型 2.2 MySQL主从复制的工作过程 2.2.1 MySQL主从复制延迟 2.3 MySQL 三种数据同步方式 2.3.1、异步复制(Async Replication) 2.3.2、同步复制(Sync Replication&#…

【基于CentOS 7 的iscsi服务】

目录 一、概述 1.简述 2.作用 3. iscsi 4.相关名称 二、使用步骤 - 构建iscsi服务 1.使用targetcli工具进入到iscsi服务器端管理界面 2.实现步骤 2.1 服务器端 2.2 客户端 2.2.1 安装软件 2.2.2 在认证文件中生成iqn编号 2.2.3 开启客户端服务 2.2.4 查找可用的i…

微服务远程调用openFeign简单回顾(内附源码示例)

目录 一. OpenFeign简介 二. OpenFeign原理 演示使用 provider模块 消费者模块 配置全局feign日志 示例源代码: 一. OpenFeign简介 OpenFeign是SpringCloud服务调用中间件,可以帮助代理服务API接口。并且可以解析SpringMVC的RequestMapping注解下的接口&#x…

在拦截器中使用redis报错空指针

问题 当在拦截器中使用 redis 时,获取不到 RedisTemplate 对象 原因 拦截器在SpringContext初始化之前就执行了,即Bean初始化之前它就执行了,所以肯定是无法获取SpringIOC容器中的内容的 解决 提前实例化拦截器 在配置类里面先实例化拦截…

学C的第三十天【自定义类型:结构体、枚举、联合】

相关代码gitee自取:C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第二十九天【字符串函数和内存函数的介绍(二)】_高高的胖子的博客-CSDN博客 1 . 结构体 (1). 结构体的基础知识: 结构…

怎么学习Java网络编程? - 易智编译EaseEditing

学习Java网络编程是掌握Java语言重要的一部分,它使得你能够开发网络应用、客户端/服务器应用以及与远程服务进行交互。以下是学习Java网络编程的一些建议: 学习基本的网络概念: 首先,你需要了解计算机网络的基本概念&#xff0c…

foreverlasting and fried-chicken hdu7293

Problem - 7293 题目大意&#xff1a;给出一个n个点&#xff0c;m条边的图&#xff0c;问其中包含了几个下面这样的子图 1<n<1000; 思路&#xff1a;我们要找两个点u,v&#xff0c;他们至少有4个公共点&#xff0c;且至少有一个点的度数至少为6&#xff0c;其中还要判断…

65英寸OLED透明屏的显示效果出色吗?

65英寸OLED透明屏是一种新型的显示技术&#xff0c;它采用有机发光二极管&#xff08;OLED&#xff09;作为显示元件&#xff0c;具有高亮度、高对比度、快速响应和广视角等优点。 与传统的液晶显示屏相比&#xff0c;OLED透明屏具有更高的透明度和更好的显示效果。 OLED透明屏…

Emacs之改造最快文本搜索工具ripgrep(一百一十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

第三大的数

414、第三大的数 class Solution {public int thirdMax(int[] nums) {Arrays.sort(nums);int tempnums[0];int ansnums[0];int count 0;// if(nums.length<3){// return nums[nums.length-1];// }// else {for(int inums.length-1;i>0;i--){if (nums[i]>nums[i…

嵌入式_GD32看门狗配置

嵌入式_GD32独立看门狗配置与注意事项 文章目录 嵌入式_GD32独立看门狗配置与注意事项前言一、什么是独立看门狗定时器&#xff08;FWDGT&#xff09;二、独立看门狗定时器原理三、独立看门狗定时器配置过程与注意事项总结 前言 使用GD3单片机时&#xff0c;为了提供了更高的安…

Jenkins+Docker 实现一键自动化部署项目

1.安装Jenkins mkdir /docker/jenkins # 新建Jenkins工作目录 docker pull jenkins/jenkins:lts # 拉取Jenkins镜像ls -nd /docker/Jenkins # 查看目录归属ID chown -R 1000:1000 /docker/jenkins # 赋予权限注&#xff1a;因为Jenkins容器里的用户是Jenkins&#xff0c;…

C# Modbus TCP上位机测试

前面说了三菱和西门子PLC的上位机通信&#xff0c;实际在生产应用中&#xff0c;设备会有很多不同的厂家生产的PLC&#xff0c;那么&#xff0c;我们就需要一种通用的语言&#xff0c;进行设备之间的通信&#xff0c;工业上较为广泛使用的语言之一就是Modbus。 Modbus有多种连…

2023年基准Kubernetes报告:6个K8s可靠性失误

云计算日益成为组织构建应用程序和服务的首选目的地。尽管一年来经济不确定性的头条新闻主要集中在通货膨胀增长和银行动荡方面&#xff0c;但大多数组织预计今年的云使用和支出将与计划的相同&#xff08;45%&#xff09;&#xff0c;或高于计划的&#xff08;45%&#xff09;…

MIT 6.830数据库系统 -- lab four

MIT 6.830数据库系统 -- lab four 项目拉取引言事务、锁 & 并发控制事务ACID特性两阶段锁 Recovery and Buffer ManagementGranting Locks(授予锁)练习1 Lock Lifetime练习2 Implementing NO STEAL练习3 事务练习4 死锁和中止练习5 项目拉取 原项目使用ant进行项目构建&am…

微服务系列(1)-who i am?

微服务系列&#xff08;1&#xff09;-我是谁 应用架构的演化 简单来说系统架构可以分为以下几个阶段&#xff1a;复杂的臃肿的单体架构-SOA架构-微服务 单体架构及其所面临的问题 在互联网发展初期&#xff0c;用户数量少&#xff0c;流量小&#xff0c;硬件成本高。因此…

96、Kafka中Zookeeper的作用

Kafka中zk的作用 它是一个分布式协调框架。很好的将消息生产、消息存储、消息消费的过程结合在一起。在典型的Kafka集群中, Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用…