YOLOv5_seg-Openvino和ONNXRuntime推理【CPU】

纯检测系列
YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv7-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】
跟踪系列
YOLOv5/6/7-Openvino-ByteTrack【CPU】
YOLOv8/9-Openvino-ByteTrack【CPU】
分割系列
YOLOv5_seg-Openvino和ONNXRuntime推理【CPU】
YOLOv8_seg-Openvino和ONNXRuntime推理【CPU】
关键点系列
YOLOv7_pose-Openvino和ONNXRuntime推理【CPU】
YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】

注:YOLOv5、YOLOv6和YOLOv7代码内容基本一致!YOLOv8和YOLOv9代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5介绍

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

4 基于Openvino和ONNXRuntime推理

下面代码整个处理过程主要包括:预处理—>推理(框/mask)—>后处理(框/mask)—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:检测头的输出(1, 8400*3, 85+32), 分割头的输出(1, 32, 160, 160);
后处理输出结果维度:boxes(-1, 6),其中第一个表示图bus.jpg检出的目标,第二个维度6表示(x1, y1, x2, y2, conf, cls);segments是各掩码轮廓点集。

4.1 全部代码

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU


# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
              'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
                'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
                  'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
                    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                      'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                        'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

    
class OpenvinoInference(object):
    def __init__(self, onnx_path):
        self.onnx_path = onnx_path
        ie = Core()
        self.model_onnx = ie.read_model(model=self.onnx_path)
        self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")
        
    def predict(self, datas):
        # 注:self.compiled_model_onnx([datas])是一个字典,self.compiled_model_onnx.output(0)是字典键,第一种读取所有值方法(0.11s) 比 第二种按键取值的方法(0.20s) 耗时减半
        predict_data = list(self.compiled_model_onnx([datas]).values()) 
        # predict_data = [self.compiled_model_onnx([datas])[self.compiled_model_onnx.output(0)],
        #                  self.compiled_model_onnx([datas])[self.compiled_model_onnx.output(1)]]
        return predict_data
    

class YOLOv5_seg:
    """YOLOv5 segmentation model class for handling inference and visualization."""

    def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):
        """
        Initialization.

        Args:
            onnx_model (str): Path to the ONNX model.
        """
        self.infer_tool = infer_tool
        if self.infer_tool == 'openvino':
            # 构建openvino推理引擎
            self.openvino = OpenvinoInference(onnx_model)
            self.ndtype = np.single
        else:
            # 构建onnxruntime推理引擎
            self.ort_session = ort.InferenceSession(onnx_model,
                                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                                if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

            # Numpy dtype: support both FP32 and FP16 onnx model
            self.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.single
       
        self.classes = CLASSES  # 加载模型类别
        self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
        """
        The whole pipeline: pre-process -> inference -> post-process.
        
        Args:
            im0 (Numpy.ndarray): original input image.
            conf_threshold (float): confidence threshold for filtering predictions.
            iou_threshold (float): iou threshold for NMS.
            nm (int): the number of masks.

        Returns:
            boxes (List): list of bounding boxes.
            segments (List): list of segments.
            masks (np.ndarray): [N, H, W], output masks.
        """
        # 前处理Pre-process
        t1 = time.time()
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)
        print('预处理时间:{:.3f}s'.format(time.time() - t1))
        
        # 推理 inference
        t2 = time.time()
        if self.infer_tool == 'openvino':
            preds = self.openvino.predict(im)
        else:
            preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})  # 与bbox区别,输出是个列表,[检测头的输出(1, 116, 8400), 分割头的输出(1, 32, 160, 160)]
        print('推理时间:{:.2f}s'.format(time.time() - t2))
        
        # 后处理Post-process
        t3 = time.time()
        boxes, segments, masks = self.postprocess(preds,
                                im0=im0,
                                ratio=ratio,
                                pad_w=pad_w,
                                pad_h=pad_h,
                                conf_threshold=conf_threshold,
                                iou_threshold=iou_threshold,
                                nm=nm
                                )
        print('后处理时间:{:.3f}s'.format(time.time() - t3))

        return boxes, segments, masks
        
    # 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW
    def preprocess(self, img):
        """
        Pre-processes the input image.

        Args:
            img (Numpy.ndarray): image about to be processed.

        Returns:
            img_process (Numpy.ndarray): image preprocessed for inference.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
        """
        # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
        shape = img.shape[:2]  # original image shape
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充

        # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
        img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)
    
    # 后处理,包括:阈值过滤+NMS+masks处理
    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
        """
        Post-process the prediction.

        Args:
            preds (Numpy.ndarray): predictions come from ort.session.run().
            im0 (Numpy.ndarray): [h, w, c] original input image.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
            conf_threshold (float): conf threshold.
            iou_threshold (float): iou threshold.
            nm (int): the number of masks.

        Returns:
            boxes (List): list of bounding boxes.
            segments (List): list of segments.
            masks (np.ndarray): [N, H, W], output masks.
        """
        # (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度score
        x, protos = preds[0], preds[1]  # 与bbox区别:Two outputs: 检测头的输出(1, 8400*3, 117), 分割头的输出(1, 32, 160, 160)
   
        # Predictions filtering by conf-threshold
        x = x[x[..., 4] > conf_threshold]

        # Create a new matrix which merge these(box, score, cls, nm) into one
        # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
        x = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:-nm], axis=-1), x[..., -nm:]]

        # NMS filtering
        # 经过NMS后的值, np.array([[x, y, w, h, conf, cls, nm], ...]), shape=(-1, 4 + 1 + 1 + 32)
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
       
        # 重新缩放边界框,为画图做准备
        if len(x) > 0:
            # Bounding boxes format change: cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # Bounding boxes boundary clamp
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            # 与bbox区别:增加masks处理
            # Process masks
            masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)
            # Masks -> Segments(contours)
            segments = self.masks2segments(masks)
            
            return x[..., :6], segments, masks  # boxes, segments, masks
        else:
            return [], [], []

    @staticmethod
    def masks2segments(masks):
        """
        It takes a list of masks(n,h,w) and returns a list of segments(n,xy) (Borrowed from
        https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L750)

        Args:
            masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).

        Returns:
            segments (List): list of segment masks.
        """
        segments = []
        for x in masks.astype('uint8'):
            c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]  # CHAIN_APPROX_SIMPLE  该函数用于查找二值图像中的轮廓。
            if c:
                # 这段代码的目的是找到图像x中的最外层轮廓,并从中选择最长的轮廓,然后将其转换为NumPy数组的形式。
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
            else:
                c = np.zeros((0, 2))  # no segments found
            segments.append(c.astype('float32'))
        return segments

    
    def process_mask(self, protos, masks_in, bboxes, im0_shape):
        """
        Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality
        but is slower. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L618)

        Args:
            protos (numpy.ndarray): [mask_dim, mask_h, mask_w].
            masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.
            bboxes (numpy.ndarray): bboxes re-scaled to original image shape.
            im0_shape (tuple): the size of the input image (h,w,c).

        Returns:
            (numpy.ndarray): The upsampled masks.
        """
        c, mh, mw = protos.shape
        masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0)  # HWN
        masks = np.ascontiguousarray(masks)
        masks = self.scale_mask(masks, im0_shape)  # re-scale mask from P3 shape to original input image shape
        masks = np.einsum('HWN -> NHW', masks)  # HWN -> NHW
        masks = self.crop_mask(masks, bboxes)
        return np.greater(masks, 0.5)

    @staticmethod
    def scale_mask(masks, im0_shape, ratio_pad=None):
        """
        Takes a mask, and resizes it to the original image size. (Borrowed from
        https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L305)

        Args:
            masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
            im0_shape (tuple): the original image shape.
            ratio_pad (tuple): the ratio of the padding to the original image.

        Returns:
            masks (np.ndarray): The masks that are being returned.
        """
        im1_shape = masks.shape[:2]
        if ratio_pad is None:  # calculate from im0_shape
            gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
            pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
        else:
            pad = ratio_pad[1]

        # Calculate tlbr of mask
        top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1))  # y, x
        bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
        if len(masks.shape) < 2:
            raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
        masks = masks[top:bottom, left:right]
        masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]),
                           interpolation=cv2.INTER_LINEAR)  # INTER_CUBIC would be better
        if len(masks.shape) == 2:
            masks = masks[:, :, None]
        return masks
    
    @staticmethod
    def crop_mask(masks, boxes):
        """
        It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box. (Borrowed from
        https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L599)

        Args:
            masks (Numpy.ndarray): [n, h, w] tensor of masks.
            boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.

        Returns:
            (Numpy.ndarray): The masks are being cropped to the bounding box.
        """
        n, h, w = masks.shape
        x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
        r = np.arange(w, dtype=x1.dtype)[None, None, :]
        c = np.arange(h, dtype=x1.dtype)[None, :, None]
        return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
    
    # 绘框,与bbox区别:增加masks可视化
    def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
        """
        Draw and visualize results.

        Args:
            im (np.ndarray): original image, shape [h, w, c].
            bboxes (numpy.ndarray): [n, 6], n is number of bboxes.
            segments (List): list of segment masks.
            vis (bool): imshow using OpenCV.
            save (bool): save image annotated.

        Returns:
            None
        """
        # Draw rectangles and polygons
        im_canvas = im.copy()
        # Draw rectangles 
        for (*box, conf, cls_), segment in zip(bboxes, segments):
            # draw contour and fill mask
            cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2)  # white borderline
            cv2.fillPoly(im_canvas, np.int32([segment]), (255, 0, 0))

            # draw bbox rectangle
            cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                          self.color_palette[int(cls_)], 1, cv2.LINE_AA)
            cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)

        # Mix image
        im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)

        # Show image
        if vis:
            cv2.imshow('demo', im)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # Save image
        if save:
            cv2.imwrite('demo.jpg', im)


if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='weights\\yolov5s-seg.onnx', help='Path to ONNX model')
    parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')
    parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')
    parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')
    parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')
    args = parser.parse_args()

    # Build model
    model = YOLOv5_seg(args.model, args.imgsz, args.infer_tool)

    # Read image by OpenCV
    img = cv2.imread(args.source)

    # Inference
    boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou)

    # Visualize, Draw bboxes and polygons
    if len(boxes) > 0:
        model.draw_and_visualize(img, boxes, segments, vis=False, save=True)

4.2 结果

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.09~0.010s(Openvino)
推理时间:0.010~0.011s(ONNXRuntime)
后处理时间:0.045s
注:640×640下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/461872.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一文总结python的异常数据处理示例

AI应用开发相关目录 本专栏包括AI应用开发相关内容分享&#xff0c;包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧 适用于具备一定算法及Python使用基础的人群 AI应用开发流程概…

【打工日常】使用Docker部署团队协作文档工具

一、ShowDoc介绍 ​ShowDoc是一个适合IT团队共同协作API文档、技术文档的工具。通过showdoc&#xff0c;可以方便地使用markdown语法来书写出API文档、数据字典文档、技术文档、在线excel文档等等。 响应式网页设计&#xff1a;可将项目文档分享到电脑或移动设备查看。同时也可…

redis持久化策略

redis中持久化策略 1.持久化是什么 在前面的过程中讲述了有关于MySQL中事务的一些特性以及隔离等级。其中很重要的一条就提到了持久化&#xff0c;持久化就是可以将数据进行一个持久保存的意思。也就是将数据写入到硬盘中&#xff0c;虽然&#xff0c;redis是操作内存的一个数…

element-plus怎么修改表单中的label字体颜色及大小

问题描述&#xff1a; 当我们在vue3中使用element-plus组件库提供的表单组件时&#xff0c;有时我们需要修改表单中label的字体颜色等属性&#xff0c;这是如果直接选中label的class进行修改是不起作用的&#xff0c;我们只需深度选择即可选中并进行修改。 比如&#xff1a; …

PS学习-抠图-蒙版-冰块酒杯等透明物体

选中图&#xff0c;ctrlA 全选 ctrlC复制 创建一个蒙版图层 选中蒙版Alt 点击进入 ctrlv 复制 ctrli 反转 原图层 ctrldelete填充为白色 添加一个背景&#xff0c;这个方法通用 首选创建一个 拖到最底部 给它填充颜色 这个可能是我图片的原因。视频是这样做的

力扣L10--- 3. 无重复字符的最长子串--2024年3月14日

1.题目 2.知识点 注1&#xff1a;containsKey 是 Java 中 HashMap 类的一个方法&#xff0c;用于检查哈希表中是否包含指定的键。 注2&#xff1a;在哈希表&#xff08;HashMap)中&#xff0c;每个键对应着唯一的值&#xff0c;因此键不能重复&#xff0c;但值可以重复。 (1)创…

公众号留言功能恢复了,你的开通了吗?

了解公众号的人都知道&#xff0c;腾讯在2018年3月宣布暂停新注册公众号的留言功能&#xff0c;这之后注册的公众号都不具备留言功能。 这成了很多号主运营人的一块心病&#xff0c;也包括我。 没有留言&#xff0c;就好似一个人玩单机游戏&#xff0c;无法与读者互动&#xff…

数据资产管理解决方案:构建高效、安全的数据生态体系

在数字化时代&#xff0c;数据已成为企业最重要的资产之一。然而&#xff0c;如何有效管理和利用这些数据资产&#xff0c;却是许多企业面临的难题。本文将详细介绍数据资产管理解决方案&#xff0c;帮助企业构建高效、安全的数据生态体系。 一、引言 在信息化浪潮的推动下&a…

DVWA-File Upload文件上传

什么是文件上传漏洞&#xff1f; 黑客利用文件上传后服务器解析处理文件的漏洞上传一个可执行的脚本文件&#xff0c;并通过此脚本文件获得了执行服务器端命令的能力。 造成文件上传漏洞的原因: 1.服务器配置不当 2.开源编辑器上传漏洞 3.本地文件上传限制被绕过 4.过滤不严格被…

【C语言】分支语句(逻辑运算符与关系运算符)

文章目录 **逻辑运算符(&&、||、!)**逻辑运算符特点短路短路-逻辑与短路-逻辑或 **关系运算符&#xff08;relational expression&#xff09;**运算操作符的结合律、运算符 **选择结构/分支结构****if 语句****复合句的if语句(if...else..语句)****不良风格的程序** *…

使用Loadrunner进行性能测试

一、确定性能测试的范围、要求、配置、工具等 明确测试的系统&#xff1a; 本文档主要指的是web应用。 明确测试要求&#xff1a; 用户提出性能测试&#xff0c;例如&#xff0c;网站首页页面响应时间在3S之内&#xff0c;主要的业务操作时间小于10s&#xff0c;支持300用户在…

【触想智能】嵌入式工控一体机在交通监控管理上的应用分析

随着现代交通网络和技术的不断发展&#xff0c;高速公路的建设已经成为国家重点工程之一。然而&#xff0c;如何确保高速公路的安全驾驶则成为了一个长期亟待解决的问题。 为了提高高速公路的交通管理效率&#xff0c;嵌入式工控一体机被广泛应用于高速公路的联合监控管理系统中…

《古滇传说水龙吟》敖诀扮演者李亚云

2024年2月28日&#xff0c;演员李亚云参演新剧古滇传说原创系列剧第一部《水龙吟》在浙江横店影视城开机拍摄。该剧由中共昆明市西山区委宣传部、石林县委宣传部、昆明滇池国家旅游度假区管委会文旅投促局、云南民族电影制片厂、云南卫视、昆明影视拍摄服务中心支持&#xff0c…

[RAM] RAM 突发传输(Burst ,Burst size, length) | Burst 读写过程与时序 精讲

主页&#xff1a; 元存储博客 文章目录 前言1. Burst 基本概念含义Burst Width &Burst Length 2. CPU Burst mode3. 总线 burst mode总线的仲裁总线突发传输时序 4. Burst Chop (突发终止)5. Burst Mode 应用什么时候用突发模式 总结 前言 在DMA&#xff08;直接内存访问&…

java基础-异常、常用类

异常 Exception 如果程序员认为一段代码可能出现异常/问题&#xff0c;try-catch异常处理机制来解决&#xff0c;从而保证程序的健壮性。将该代码块–》选中–》快捷键 ctrlaltt–》选中 try-catch 常见的一些异常~ 异常体系图&#xff0c;体现了继承和实现关系。&#xff08…

ubuntu 安装 infiniband 和 RoCE 驱动

下载驱动程序 驱动程序地址 https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/ 安装 安装参考文档 https://docs.nvidia.com/networking/display/mlnxofedv24010331/installing+mlnx_ofed#src-2571322208_InstallingMLNX_OFED-InstallationProced…

调皮的String及多种玩法(上部)

&#x1f468;‍&#x1f4bb;作者简介&#xff1a;&#x1f468;&#x1f3fb;‍&#x1f393;告别&#xff0c;今天 &#x1f4d4;高质量专栏 &#xff1a;☕java趣味之旅 欢迎&#x1f64f;点赞&#x1f5e3;️评论&#x1f4e5;收藏&#x1f493;关注 &#x1f496;衷心的希…

通过actions configuration tool进行快速open 软件的定义

这个主要是看到有人可以直接在文件夹中右键打开terminator得到的启发&#xff1a; 首先需要下载工具 sudo apt-get install nautilus-actions下载terminator&#xff1a; sudo apt-get install terminator去软件目录寻找filemanager-action 然后新建一个action&#xff0c…

简单的网页制作

1网页编写格式 <!DOCTYPE html> <html><head><meta charset"utf-8"> <title>中文测试。。。。</title></head><body>这里是测试body测试内容。。。</body> </html>2标签 在body内<h1></h1&…

平衡树——treap

treap实际上就是tree(BST&#xff0c;二叉搜索树)heap(堆) 我们维护一个二叉树来储存值&#xff0c;但是为了避免二叉树由于值太特殊变成链式结构&#xff0c;我们对于每个点加入一个val值&#xff0c;这个是随机值&#xff0c;我们通过这个随机值来维护一个大根堆(只与val有关…