Transformer代码从零解读【Pytorch官方版本】

文章目录

      • 1、Transformer大致有3大应用
      • 2、Transformer的整体结构图
      • 3、如何处理batch-size句子长度不一致问题
      • 4、MultiHeadAttention(多头注意力机制)
      • 5、前馈神经网络
      • 6、Encoder中的输入masked
      • 7、完整代码
      • 补充知识:

1、Transformer大致有3大应用

1、机器翻译类应用:Encoder和Decoder共同使用,
2、只使用Encoder端:文本分类BERT和图片分类VIT,
3、只使用Decoder端:生成类模型,

2、Transformer的整体结构图

Transformer整体结构有2个输入,1个输出,具体过程可参考这个链接:详情请点击,
如下图,左边是Encoder,右边是Decoder,2个输入分别是Encoder的输入,Decoder的输入,
先看左边的Encoder,输入经过词向量层和位置编码层,得到最终的输入,通过多头注意力机制和前馈神经网络得到Encoder的输出,该输出会与Decoder进行交互,
再看右边的Decoder,输入经过词向量层和位置编码层,得到最终的输入,通过掩码注意力机制,然后交互注意力机制与Encoder的输出做交互,Encoder的输出做K矩阵、V矩阵,Decoder的值做Q矩阵,再经过前馈神经网络层,得到Decoder的输出,

在这里插入图片描述

如下图一共有2个输入,分别是“我爱你”和“S I LOVE YOU”,“我爱你”这个句子是3个token,token翻译成词元,“S I LOVE YOU”中的 S 是特殊字符,“I LOVE YOU E”是解码端的真实标签,与输出结果计算损失,
解码端是没法并行的,因为输入【S】,输出【I】,然后输出的【I】作为下一阶段的输入,这一次的输入取决于上一次的输出,所以解码端无法并行,
但是为了加快训练速度和收敛速度,我们使用Teacher forcing,就是把真实标签作为一种输入,把当前输入单词后面所有的单词全部 mask 掉,

在这里插入图片描述

“ich mochte ein bier P”是编码端的德语输入,“S i want a beer"是解码端的英语输入,“i want a beer E”是解码端的真实标签,一般在训练时为了加快训练速度,需要增加batch-size,

在这里插入图片描述

3、如何处理batch-size句子长度不一致问题

以中文为例,batch-size为4,如下图所示每一行句子代表每个batch-size中的第一个句子,代表Encoding的输入,Decoding的输入和标签值下图已省略,
1个batch在被模型处理的时候,为了加快速度常使用矩阵的方式来计算,但是如果一个batch中句子长度不一致,就组不成一个有效的矩阵,为了解决这个问题,一个常规的操作就是给每个句子设置 max-length,

在这里插入图片描述

假设设置max-length为8,句子的长度大于8的删除,小于8的用P替换,如下图,
需要注意的是,PAD这种方法不仅用在在Encoder的输入,也用在Decoder的输入,

在这里插入图片描述

位置编码公式:
P E ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i / d m o d e l ) PE(pos,2i)=sin(pos/10000^{2i/d_{model}}) PE(pos,2i)=sin(pos/100002i/dmodel)
P E ( p o s , 2 i + 1 ) = c o s ( p o s / 1000 0 2 i / d m o d e l ) PE(pos,2i+1)=cos(pos/10000^{2i/d_{model}}) PE(pos,2i+1)=cos(pos/100002i/dmodel)
两个共有的部分: e − ( 2 i ) / d m o d e l ∗ l o g ( 10000 ) = 1 / 1000 0 2 i / d m o d e l e^{-(2i)/d_{model}*log(10000)}=1/10000^{2i/d_{model}} e(2i)/dmodellog(10000)=1/100002i/dmodel,这里POS代表的是每个字符在整个句子中的索引,512是整个句子最大长度,和2i对应的Embedding维度512要区分开,位置编码和Embedding相加即可得到整个输出的内容,

位置编码公式代码如下:

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()

        # 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式;
        # 从理解上来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算;
        # pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127
        # 假设我的d_model是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4,...,510
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  # shape:[max_len,1]
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  # shape:[d_model/2]
        pe[:, 0::2] = torch.sin(position * div_term)  # 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,步长为2,其实代表的就是偶数位置
        pe[:, 1::2] = torch.cos(position * div_term)  # 这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,步长为2,其实代表的就是奇数位置
        # 上面代码获取之后得到的pe.shape:[max_len, d_model]

        # 下面这个代码之后,我们得到的pe形状是:[max_len, 1, d_model]
        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_buffer('pe', pe)  # 定一个缓冲区,其实简单理解为这个参数不更新就可以

    def forward(self, x):
        """
        x: [src_len, batch_size, d_model]
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)

为什么需要告诉后面模型哪些位置被PAD填充

注意力机制公式:

A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

下图是 Q K T QK^T QKT相乘后的矩阵,还没有经过softmax计算,表示每个单词和其他所有单词的相似性,应该能看到不应该把PAD参与计算,

在这里插入图片描述

如何去掉PAD信息?利用符号矩阵,不是PAD置为0,是PAD的置为1,

在这里插入图片描述

代码:

把PAD为0的元素置为True,

# 比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状
# len_input * len*input  代表每个单词对其余包含自己的单词的影响力

# 所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为无穷大;

# 一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对k中的做标识,因为没必要

# seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的;

def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k, one is masking
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k

4、MultiHeadAttention(多头注意力机制)

如下图,batch-size为1,src_len为2(即有2个单词), d m o d e l d_{model} dmodel为4,

在这里插入图片描述
代码:

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        # 输入进来的QKV是相等的,我们会使用映射linear做一个映射得到参数矩阵Wq, Wk, Wv
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
        self.linear = nn.Linear(n_heads * d_v, d_model)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, Q, K, V, attn_mask):
        # 这个多头分为这几个步骤,首先映射分头,然后计算atten_scores,然后计算atten_value;
        # 输入进来的数据形状: Q: [batch_size x len_q x d_model], K: [batch_size x len_k x d_model],👇
        # V: [batch_size x len_k x d_model], attn_mask.shape:[batch_size, src_len_q, src_len_k]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)

        # 下面这个就是先映射,后分头;一定要注意的是q和k分头之后维度是一致的,所以一看这里都是dk
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,
                                                                       2)  # q_s: [batch_size x n_heads x len_q x d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,
                                                                       2)  # k_s: [batch_size x n_heads x len_k x d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,
                                                                       2)  # v_s: [batch_size x n_heads x len_k x d_v]

        # 输入进行的attn_mask形状是 batch_size x len_q x len_k,👇
        # 然后经过下面这个代码得到 新的attn_mask : [batch_size x n_heads x len_q x len_k],
        # 就是把pad信息重复了n个头上
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)

        # 然后我们计算 ScaledDotProductAttention 这个函数,去7.看一下
        # 得到的结果有两个:context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q x len_k]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        # context: [batch_size x len_q x n_heads * d_v]
        context = context.transpose(1, 2).contiguous().view(batch_size, -1,
                                                            n_heads * d_v)
        output = self.linear(context)
        return self.layer_norm(output + residual), attn  # output: [batch_size x len_q x d_model]

Encoder代码:

class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        # 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size x seq_len_q x d_model] 需要注意的是最初始的QKV矩阵是等同于这个输入的,
        # 去看一下enc_self_attn函数 6.
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs,
                                               enc_self_attn_mask)  # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs)  # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn


def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k, one is masking
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()

        # 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式;
        # 从理解上来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算;
        # pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127
        # 假设我的d_model是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4,...,510
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)  # 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,补长为2,其实代表的就是偶数位置
        pe[:, 1::2] = torch.cos(position * div_term)  # 这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,补长为2,其实代表的就是奇数位置
        # 上面代码获取之后得到的pe:[max_len*d_model]

        # 下面这个代码之后,我们得到的pe形状是:[max_len*1*d_model]
        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_buffer('pe', pe)  # 定一个缓冲区,其实简单理解为这个参数不更新就可以

    def forward(self, x):
        """
        x: [seq_len, batch_size, d_model]
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        # nn.Embedding:https://blog.csdn.net/raelum/article/details/125462028?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171029892316800211559494%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=171029892316800211559494&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-125462028-null-null.142^v99^pc_search_result_base8&utm_term=nn.Embedding&spm=1018.2226.3001.4187
        self.src_emb = nn.Embedding(src_vocab_size, d_model)  # 这个其实就是去定义生成一个矩阵,大小是 src_vocab_size * d_model,👇
        # src_vocab_size=src_len,d_model是词向量的维度,
        self.pos_emb = PositionalEncoding(d_model)  # 位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码
        self.layers = nn.ModuleList(
            [EncoderLayer() for _ in range(n_layers)])  # 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来;

    def forward(self, enc_inputs):
        # 这里我们的 enc_inputs 形状是: [batch_size * src_len]

        # 下面这个代码通过src_emb进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model]
        enc_outputs = self.src_emb(enc_inputs)

        # 这里就是位置编码,把两者相加放入到了这个函数里面,从这里可以去看一下位置编码函数的实现;3.
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1)

        # get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响,去看一下这个函数 4.
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            # 去看EncoderLayer 层函数 5.
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

5、前馈神经网络

代码:

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, inputs):
        residual = inputs  # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return self.layer_norm(output + residual)

6、Encoder中的输入masked

如果当前输入为【S】,则后面的【卷起来】被遮挡,当输入为【S卷】时,后面的【起来】被遮挡,形成上三角矩阵为1的矩阵,

在这里插入图片描述

7、完整代码

# from https://github.com/graykode/nlp-tutorial/tree/master/5-1.Transformer

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import math


def make_batch(sentences):
    input_batch = [[src_vocab[n] for n in sentences[0].split()]]
    output_batch = [[tgt_vocab[n] for n in sentences[1].split()]]
    target_batch = [[tgt_vocab[n] for n in sentences[2].split()]]
    return torch.LongTensor(input_batch), torch.LongTensor(output_batch), torch.LongTensor(target_batch)


# 10
def get_attn_subsequent_mask(seq):
    """
    seq: [batch_size, tgt_len]
    """
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    # attn_shape: [batch_size, tgt_len, tgt_len]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1)  # 生成一个上三角矩阵
    subsequence_mask = torch.from_numpy(subsequence_mask).byte()
    return subsequence_mask  # [batch_size, tgt_len, tgt_len]


# 7. ScaledDotProductAttention
class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        # 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k]  K: [batch_size x n_heads x len_k x d_k]👇
        # V: [batch_size x n_heads x len_k x d_v], attn_mask : [batch_size x n_heads x len_q x len_k]
        # 首先经过matmul函数得到的scores形状是 : [batch_size x n_heads x len_q x len_k]
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)

        # 然后关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用
        scores.masked_fill_(attn_mask, -1e9)  # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        return context, attn


# 6. MultiHeadAttention
class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        # 输入进来的QKV是相等的,我们会使用映射linear做一个映射得到参数矩阵Wq, Wk, Wv
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
        self.linear = nn.Linear(n_heads * d_v, d_model)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, Q, K, V, attn_mask):
        # 这个多头分为这几个步骤,首先映射分头,然后计算atten_scores,然后计算atten_value;
        # 输入进来的数据形状: Q: [batch_size x len_q x d_model], K: [batch_size x len_k x d_model],👇
        # V: [batch_size x len_k x d_model], attn_mask.shape:[batch_size, src_len_q, src_len_k]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)

        # 下面这个就是先映射,后分头;一定要注意的是q和k分头之后维度是一致的,所以一看这里都是dk
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,
                                                                       2)  # q_s: [batch_size x n_heads x len_q x d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,
                                                                       2)  # k_s: [batch_size x n_heads x len_k x d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,
                                                                       2)  # v_s: [batch_size x n_heads x len_k x d_v]

        # 输入进行的attn_mask形状是 batch_size x len_q x len_k,👇
        # 然后经过下面这个代码得到 新的attn_mask : [batch_size x n_heads x len_q x len_k],
        # 就是把pad信息重复了n个头上
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)

        # 然后我们计算 ScaledDotProductAttention 这个函数,去7.看一下
        # 得到的结果有两个:context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q x len_k]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        # context: [batch_size x len_q x n_heads * d_v]
        context = context.transpose(1, 2).contiguous().view(batch_size, -1,
                                                            n_heads * d_v)
        output = self.linear(context)
        return self.layer_norm(output + residual), attn  # output: [batch_size x len_q x d_model]


# 8. PoswiseFeedForwardNet
class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, inputs):
        residual = inputs  # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return self.layer_norm(output + residual)


# 4. get_attn_pad_mask

# 比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状
# len_input * len*input  代表每个单词对其余包含自己的单词的影响力

# 所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为无穷大;

# 一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对k中的做标识,因为没必要

# seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的;

def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # shape:[batch_size, 1, len_k], one is masking
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # shape:[batch_size, len_q, len_k]


# 3. PositionalEncoding 代码实现
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()

        # 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式;
        # 从理解上来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算;
        # pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127
        # 假设我的d_model是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4,...,510
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  # shape:[max_len,1]
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  # shape:[d_model/2]
        pe[:, 0::2] = torch.sin(position * div_term)  # 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,步长为2,其实代表的就是偶数位置
        pe[:, 1::2] = torch.cos(position * div_term)  # 这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,步长为2,其实代表的就是奇数位置
        # 上面代码获取之后得到的pe.shape:[max_len, d_model]

        # 下面这个代码之后,我们得到的pe形状是:[max_len, 1, d_model]
        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_buffer('pe', pe)  # 定一个缓冲区,其实简单理解为这个参数不更新就可以

    def forward(self, x):
        """
        x: [src_len, batch_size, d_model]
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


# 5. EncoderLayer :包含两个部分,多头注意力机制和前馈神经网络
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        # 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size, seq_len_q, d_model], 需要注意的是最初始的QKV矩阵是等同于这个输入的,
        # 去看一下enc_self_attn函数 6.
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs,
                                               enc_self_attn_mask)  # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs)  # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn


# 2. Encoder 部分包含三个部分:词向量embedding,位置编码部分,注意力层及后续的前馈神经网络
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        # nn.Embedding:https://blog.csdn.net/raelum/article/details/125462028?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171029892316800211559494%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=171029892316800211559494&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-125462028-null-null.142^v99^pc_search_result_base8&utm_term=nn.Embedding&spm=1018.2226.3001.4187
        self.src_emb = nn.Embedding(src_vocab_size, d_model)  # 这个其实就是去定义生成一个矩阵,大小是 src_vocab_size * d_model,👇
        # src_vocab_size=src_len,d_model是词向量的维度,
        self.pos_emb = PositionalEncoding(d_model)  # 位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码
        self.layers = nn.ModuleList(
            [EncoderLayer() for _ in range(n_layers)])  # 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来;

    def forward(self, enc_inputs):
        # 这里我们的 enc_inputs 形状是: [batch_size, src_len]

        # 下面这个代码通过src_emb进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model]
        enc_outputs = self.src_emb(enc_inputs)

        # 这里就是位置编码,把两者相加放入到了这个函数里面,从这里可以去看一下位置编码函数的实现;3.
        # enc_outputs.shape:[batch_size, src_len, d_model]
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1)

        # get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响,去看一下这个函数 4.
        # enc_self_attn_mask.shape:[batch_size, src_len_q, src_len_k]
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            # 去看EncoderLayer 层函数 5.
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns


# 10.
class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs)
        return dec_outputs, dec_self_attn, dec_enc_attn


# 9. Decoder
class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs):  # dec_inputs : [batch_size x target_len]
        dec_outputs = self.tgt_emb(dec_inputs)  # [batch_size, tgt_len, d_model]
        dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1)  # [batch_size, tgt_len, d_model]

        # get_attn_pad_mask 自注意力层的时候的pad部分
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)

        # get_attn_subsequent_mask 这个做的是自注意层的mask部分,就是当前单词之后看不到,使用一个上三角为1的矩阵
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)

        # 两个矩阵相加,大于0的为1,不大于0的为0,为1的在之后就会被fill到无限小
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)

        # 这个做的是交互注意力机制中的mask矩阵,enc的输入是k,我去看这个k里面哪些是pad符号,给到后面的模型;注意哦,我q肯定也是有pad符号,但是这里我不在意的,👇
        # 之前说了好多次了哈
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask,
                                                             dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns


# 1. 从整体网路结构来看,分为三个部分:编码层,解码层,输出层
class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()  # 编码层
        self.decoder = Decoder()  # 解码层
        self.projection = nn.Linear(d_model, tgt_vocab_size,
                                    bias=False)  # 输出层d_model是我们解码层每个token输出的维度大小,之后会做一个tgt_vocab_size大小的softmax

    def forward(self, enc_inputs, dec_inputs):
        # 这里有两个数据进行输入,一个是enc_inputs,形状为[batch_size, src_len],主要是作为编码段的输入,一个是dec_inputs,形状为[batch_size, tgt_len],👇
        # 主要是作为解码端的输入;
        # enc_inputs作为输入,形状为[batch_size, src_len],输出由自己的函数内部指定,想要输出什么就可以指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;👇
        # 也可以是中间某些参数的输出;
        # enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)

        # dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns,是查看每个单词对decoder中输入的其余单词的相关性;
        # dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性;
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)

        # dec_outputs做映射到词表大小
        dec_logits = self.projection(dec_outputs)  # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns


if __name__ == '__main__':

    # 句子的输入部分,P是指PAD
    # 这3个句子分别代表Encoding的输入,Decoding的输入,Decoding的真实标签,
    sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']

    # Transformer Parameters
    # Padding Should be Zero
    # 构建Encoding词表(Vocabulary)
    src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4}
    src_vocab_size = len(src_vocab)

    # 构建Decoding词表(Vocabulary)
    tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'S': 5, 'E': 6}
    tgt_vocab_size = len(tgt_vocab)

    src_len = 5  # length of source
    tgt_len = 5  # length of target

    # 模型参数
    d_model = 512  # Embedding Size,每个字符转换为Embedding的大小
    d_ff = 2048  # FeedForward dimension
    d_k = d_v = 64  # dimension of K(=Q), V
    n_layers = 6  # number of Encoder of Decoder Layer
    n_heads = 8  # number of heads in Multi-Head Attention

    model = Transformer()

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    enc_inputs, dec_inputs, target_batch = make_batch(sentences)

    for epoch in range(20):
        optimizer.zero_grad()
        outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
        loss = criterion(outputs, target_batch.contiguous().view(-1))
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
        loss.backward()
        optimizer.step()

补充知识:

torch.repeat和torch.expand的区别,

代码:

import torch
a=torch.arange(0, 9).view(3, 3)
print(a)
b=a.eq(0)
print(b)
c=b.unsqueeze(1)
print(c)
d=c.expand(3, 3, 3)
print(d)
e=c.repeat(1, 3, 1)
print(e)

输出:

tensor([[0, 1, 2],
        [3, 4, 5],
        [6, 7, 8]])
tensor([[ True, False, False],
        [False, False, False],
        [False, False, False]])
tensor([[[ True, False, False]],

        [[False, False, False]],

        [[False, False, False]]])
tensor([[[ True, False, False],
         [ True, False, False],
         [ True, False, False]],

        [[False, False, False],
         [False, False, False],
         [False, False, False]],

        [[False, False, False],
         [False, False, False],
         [False, False, False]]])
tensor([[[ True, False, False],
         [ True, False, False],
         [ True, False, False]],

        [[False, False, False],
         [False, False, False],
         [False, False, False]],

        [[False, False, False],
         [False, False, False],
         [False, False, False]]])

参考:
1、nn.Embedding:CSDN链接,
2、哔哩哔哩视频,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/461376.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++ 入门篇

目录 1、了解C 2、C关键字 2、命名空间 2.1 命名空间的定义 2.2 命名空间的使用 3. C输入与输出 4.缺省参数 4.1 缺省参数的概念 4.2 缺省参数的分类 5. 函数重载 5.1 函数重载的概念 5.2 C中支持函数重载的原理--名字修饰 6. 引用 6.1 引用概念 6.2 引用…

Docker 系列2【docker安装mysql】【开启远程连接】

文章目录 前言开始步骤1.增加mysql挂载目录2.下载镜像2.启动容器具体步骤4.无法连接5.测试连接 总结 前言 本文开始,默认已经安装docker,如果你还没有完成这个步骤,请查看这一篇文章【docker安装与使用】 开始步骤 1.增加mysql挂载目录 m…

网络原理(1)——UDP协议

目录 一、应用层 举个例子:点外卖 约定数据格式简单粗暴的例子 客户端和服务器的交互: 序列化和返序列化 xml、json、protobuffer 1、xml 2、json 3、protobuffer 二、传输层 端口 端口号范围划分 认识知名的端口号 三、UDP协议 端口 U…

宜搭faas服务器报错Network response was not OK

[error] https://api.dingtalk.com/v1.0/yida/forms/instances? fetch error Error: Network response was not OK 不出意外的话肯定是请求代码的某个部分出了问题:其中formInstanceId和updateFormDataJson是业务的内容 我检查过是没问题的。appType和systemToken…

面试经典-MySQL篇

一、MySQL组成 MySQL数据库的连接池:由一个线程来监听一个连接上请求以及读取请求数据,解析出来一条我们发送过去的SQL语句SQL接口:负责处理接收到的SQL语句查询解析器:让MySQL能看懂SQL语句查询优化器:选择最优的查询…

【C#】【SAP2000】读取SAP2000中所有Frame对象在指定工况的温度荷载值到Grasshopper中

if (build true) {// 连接到正在运行的 SAP2000// 使用 COM 接口获取 SAP2000 的 API 对象cOAPI mySapObject (cOAPI)System.Runtime.InteropServices.Marshal.GetActiveObject("CSI.SAP2000.API.SapObject");// 获取 SAP2000 模型对象cSapModel mySapModel mySap…

Vue 项目安装依赖提示core-js版本低的处理办法

core-js2.6.12: core-js<3 is no longer maintained and not recommended for usage due to the number of issues. Please, upgrade your dependencies to the actual version of core-js3. 我是下载一个老的项目&#xff0c;npm install之后提示上面的错误&#xff1b;本…

Linux——ELK日志分析系统

实验环境 虚拟机三台CentOS 7.9&#xff0c; 组件包 elasticsearch-5.5.0.rpm elasticsearch-head.tar.gz node-v8.2.1.tar.gz phantomjs-2.1.1-linux-x86_64.tar.bz2 logstash-5.5.1.rpm kibana-5.5.1-x86_64.rpm 初始…

分享一下自己总结的7万多字java面试笔记和一些面试视频,简历啥的,已大厂上岸

分享一下自己总结的7万多字java面试笔记和一些面试视频&#xff0c;简历啥的&#xff0c;已大厂上岸 自己总结的面试简历资料&#xff1a;https://pan.quark.cn/s/8b602fe53b58 文章目录 SSMspringspring 的优点&#xff1f;IoC和AOP的理解**Bean 的生命周期****列举一些重要…

C++进阶:详解多态(多态、虚函数、抽象类以及虚函数原理详解)

C进阶&#xff1a;详解多态&#xff08;多态、虚函数、抽象类以及虚函数原理详解&#xff09; 结束了继承的介绍&#xff1a;C进阶&#xff1a;详细讲解继承 那紧接着的肯定就是多态啦 文章目录 1.多态的概念2.多态的定义和实现2.1多态的构成条件2.2虚函数2.2.1虚函数的概念2…

算法笔记 连载中。。。

HashMap&#xff08;会根据key值自动排序&#xff09; HashMap<String, Integer> hash new HashMap<>() hash.put(15,18) hash.getOrDefault(ts, -1) //如果ts(key)存在&#xff0c;返回对应的value 否则返回-1 hashMap1.get(words1[i])1会报错&#xff0c;因…

Vue2在一个页面内动态切换菜单显示对应的路由组件

项目的需求是在一个页面内动态获取导航菜单&#xff0c;导航菜单切换的时候显示对应的路由页面&#xff0c;类似于tab切换的形式&#xff0c;切换的导航菜单和页面左侧导航菜单是同一个路由组件&#xff0c;只是放到了一个页面上&#xff0c;显示的个数不同&#xff0c;所有是动…

QT下跨平台库实现及移植经验分享

最近在移植公司一个QT桌面软件到android上&#xff0c;有一些公司自定义的库&#xff0c;用了很多windows的api&#xff0c;移植过程很是曲折&#xff0c;在此有一些感悟分享一下~ 一.自编写跨平台库 1.有时候为了程序给第三方用需要编译一些qt封装库&#xff0c;并可能跨平台…

AI智慧校园电子班牌云平台源码

目录 家长端 学校端 电子围栏 亲情通话 课堂答题 移动化管理模式 统一资源管理平台 模板内容智能更换 家校互联 家长端 多场景通话:上学放学联系、紧急遇险求助联系、日常亲情通话关注孩子人身安全:到校离校情况、进入危险区域预警等。 学校端 课堂秩序管理:提高教…

canvas绘制时,画布上有一个镂空的圆形(即背景可见),然后随着动画的进行,这个圆形的边界逐渐扩大至充满整个屏幕

<canvas id"myCanvas" width"800" height"600"></canvas>在不同宽高比的屏幕上&#xff0c;如果canvas元素没有被强制保持与窗口同样的宽高比&#xff08;例如通过CSS设置其宽度和高度百分比或者响应式布局&#xff09;&#xff0c;…

【商业|数据科学主题会议推荐】2024年商业分析与数据科学国际学术会议(ICBADS 2024)

【商业|数据科学主题会议推荐】2024年商业分析与数据科学国际学术会议&#xff08;ICBADS 2024) 征稿主题 &#xff08;以下主题包括但不限于&#xff09; 多媒体决策 决策理论与决策科学 数字市场设计与运营 降维 电子商务 道德决策 财务分析 群体决策与软件 医疗保…

【Linux-网络编程】

Linux-网络编程 ■ 网络结构■ C/S结构■ B/S结构 ■ 网络模型■ OSI七层模型■ TCP/IP四层模型 ■ TCP■ TCP通信流程■ TCP三次握手■ TCP四次挥手 ■ 套接字&#xff1a;socket 主机IP 主机上的进程&#xff08;端口号&#xff09;■ TCP传输文件 ■ 网络结构 ■ C/S结构…

MATLAB中visdiff函数用法

目录 语法 说明 示例 比较两个文件 比较两个文件并指定类型 发布比较报告 visdiff函数的功能是比较两个文件或文件夹。 语法 visdiff(filename1,filename2) visdiff(filename1,filename2,type) comparison visdiff(___) 说明 visdiff(filename1,filename2) 打开比较工…

cdo求多年平均教程

问题描述&#xff1a; 现有模式的输出数据&#xff0c;是以每个月一个文件的方式输出的&#xff0c;现在我想要十年的平均。 解决方法&#xff1a; 求这些数据十年的平均只需要这一行就可以了&#xff0c;首先将2000年到2009年的所有数据选出来&#xff0c;然后用xargs 命令传…

计算机设计大赛 题目:基于大数据的用户画像分析系统 数据分析 开题

文章目录 1 前言2 用户画像分析概述2.1 用户画像构建的相关技术2.2 标签体系2.3 标签优先级 3 实站 - 百货商场用户画像描述与价值分析3.1 数据格式3.2 数据预处理3.3 会员年龄构成3.4 订单占比 消费画像3.5 季度偏好画像3.6 会员用户画像与特征3.6.1 构建会员用户业务特征标签…