深度学习 精选笔记(11)深度学习计算相关:GPU、参数、读写、块

学习参考:

  • 动手学深度学习2.0
  • Deep-Learning-with-TensorFlow-book
  • pytorchlightning

①如有冒犯、请联系侵删。
②已写完的笔记文章会不定时一直修订修改(删、改、增),以达到集多方教程的精华于一文的目的。
③非常推荐上面(学习参考)的前两个教程,在网上是开源免费的,写的很棒,不管是开始学还是复习巩固都很不错的。

深度学习回顾,专栏内容来源多个书籍笔记、在线笔记、以及自己的感想、想法,佛系更新。争取内容全面而不失重点。完结时间到了也会一直更新下去,已写完的笔记文章会不定时一直修订修改(删、改、增),以达到集多方教程的精华于一文的目的。所有文章涉及的教程都会写在开头、一起学习一起进步。

1.神经网络的层和块

神经网络块,“比单个层大”但“比整个模型小”的组件。块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的:
在这里插入图片描述
从编程的角度来看,块由类(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。

如下代码,进行解读:
通过实例化keras.models.Sequential来构建模型, 层的执行顺序是作为参数传递的。 简而言之,Sequential定义了一种特殊的keras.Model, 即在Keras中表示一个块的类。 它维护了一个由Model组成的有序列表, 注意两个全连接层都是Model类的实例, 这个类本身就是Model的子类。 前向传播(call)函数也非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。 注意,到目前为止,一直在通过net(X)调用模型来获得模型的输出。 这实际上是net.call(X)的简写, 这是通过Block类的__call__函数实现的一个Python技巧。

import tensorflow as tf

net = tf.keras.models.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(10),
])

X = tf.random.uniform((2, 20))
net(X)#相当于net.__call__(X)

Sequential的设计是为了把其他模块串起来。

2.自定义 块

从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP类继承了表示块的类。 实现只需要提供自己的构造函数(Python中的__init__函数)和前向传播函数。

  • 将输入数据作为其前向传播函数的参数。
  • 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收任意维的输入,但是返回一个维度256的输出。
  • 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  • 存储和访问前向传播计算所需的参数。
  • 根据需要初始化模型参数。
class MLP(tf.keras.Model):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Model的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        # Hiddenlayer
        self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
        self.out = tf.keras.layers.Dense(units=10)  # Outputlayer

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def call(self, X):
        return self.out(self.hidden((X)))

net = MLP()
net(X)

代码解读:

  • 前向传播函数以X作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。
  • 实例化多层感知机的层,然后在每次调用前向传播函数时调用这些层;定制的__init__函数通过super().__init__() 调用父类的__init__函数, 省去了重复编写模版代码的痛苦。
  • 实例化两个全连接层, 分别为self.hidden和self.out。 注意,除非要实现一个新的运算符, 否则不必担心反向传播函数或参数初始化, 系统将自动生成这些。

(1)顺序块

Sequential的设计基本上总结为:

  • 一种将块逐个追加到列表中的函数;
  • 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

如下,MySequential的用法与之前为Sequential类编写的代码相同。

class MySequential(tf.keras.Model):
    def __init__(self, *args):
        super().__init__()
        self.modules = []
        for block in args:
            # 这里,block是tf.keras.layers.Layer子类的一个实例
            self.modules.append(block)

    def call(self, X):
        for module in self.modules:
            X = module(X)
        return X

net = MySequential(
    tf.keras.layers.Dense(units=256, activation=tf.nn.relu),
    tf.keras.layers.Dense(10))
net(X)

3. 在前向传播函数中执行代码

Sequential类使模型构造变得简单, 允许组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,需要定义自己的块。

网络中的所有操作都对网络的激活值及网络的参数起作用,然而,希望合并既不是上一层的结果也不是可更新参数的项, 称之为常数参数(constant parameter)。

class FixedHiddenMLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.flatten = tf.keras.layers.Flatten()
        # 使用tf.constant函数创建的随机权重参数在训练期间不会更新(即为常量参数)
        self.rand_weight = tf.constant(tf.random.uniform((20, 20)))
        self.dense = tf.keras.layers.Dense(20, activation=tf.nn.relu)

    def call(self, inputs):
        X = self.flatten(inputs)
        # 使用创建的常量参数以及relu和matmul函数
        X = tf.nn.relu(tf.matmul(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数。
        X = self.dense(X)
        # 控制流
        while tf.reduce_sum(tf.math.abs(X)) > 1:
            X /= 2
        return tf.reduce_sum(X)

net = FixedHiddenMLP()
net(X)

在这个FixedHiddenMLP模型中,实现了一个隐藏层, 其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。 这个权重不是一个模型参数,因此它永远不会被反向传播更新。

4.多个块混合组合

一个块混合搭配各种组合块,一个块可以由许多层组成;一个块可以由许多块组成。

class FixedHiddenMLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.flatten = tf.keras.layers.Flatten()
        # 使用tf.constant函数创建的随机权重参数在训练期间不会更新(即为常量参数)
        self.rand_weight = tf.constant(tf.random.uniform((20, 20)))
        self.dense = tf.keras.layers.Dense(20, activation=tf.nn.relu)

    def call(self, inputs):
        X = self.flatten(inputs)
        # 使用创建的常量参数以及relu和matmul函数
        X = tf.nn.relu(tf.matmul(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数。
        X = self.dense(X)
        # 控制流
        while tf.reduce_sum(tf.math.abs(X)) > 1:
            X /= 2
        return tf.reduce_sum(X)

class NestMLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.net = tf.keras.Sequential()
        self.net.add(tf.keras.layers.Dense(64, activation=tf.nn.relu))
        self.net.add(tf.keras.layers.Dense(32, activation=tf.nn.relu))
        self.dense = tf.keras.layers.Dense(16, activation=tf.nn.relu)

    def call(self, inputs):
        return self.dense(self.net(inputs))

chimera = tf.keras.Sequential()
chimera.add(NestMLP())
chimera.add(tf.keras.layers.Dense(20))
chimera.add(FixedHiddenMLP())
chimera(X)

5.参数管理

在选择了架构并设置了超参数后,就进入了训练阶段。 此时,目标是找到使损失函数最小化的模型参数值。经过训练后,将需要使用这些参数来做出未来的预测。 此外,希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。

import tensorflow as tf

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(4, activation=tf.nn.relu),
    tf.keras.layers.Dense(1),
])

X = tf.random.uniform((2, 4))
net(X)

5.1参数访问

从已有模型中访问参数。 当通过Sequential类定义模型时, 可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。

import tensorflow as tf

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(4, activation=tf.nn.relu),
    tf.keras.layers.Dense(1),
])

X = tf.random.uniform((2, 4))
net(X)
print(net.layers[2].weights)
[<tf.Variable 'dense_1/kernel:0' shape=(4, 1) dtype=float32, numpy=
array([[ 0.06311333],
       [-0.17863423],
       [-0.38862765],
       [ 0.9374387 ]], dtype=float32)>, <tf.Variable 'dense_1/bias:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>]

代码解释:
首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

(1)访问目标参数

注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先需要访问底层的数值。

第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值:

print(type(net.layers[2].weights[1]))
print(net.layers[2].weights[1])
print(tf.convert_to_tensor(net.layers[2].weights[1]))
<class 'tensorflow.python.ops.resource_variable_ops.ResourceVariable'>
<tf.Variable 'dense_1/bias:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>
tf.Tensor([0.], shape=(1,), dtype=float32)

(2) 一次性访问所有参数

当需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为需要递归整个树来提取每个子块的参数。

print(net.layers[1].weights)
print(net.get_weights())
[<tf.Variable 'dense/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[ 0.34964794, -0.01246995, -0.66718704,  0.8423942 ],
       [ 0.40420133,  0.48373526, -0.16817617,  0.58779615],
       [-0.33410978,  0.44151586, -0.14673978, -0.4114933 ],
       [-0.18501085, -0.1278897 ,  0.5296257 ,  0.21039444]],
      dtype=float32)>, <tf.Variable 'dense/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>]
[array([[ 0.34964794, -0.01246995, -0.66718704,  0.8423942 ],
       [ 0.40420133,  0.48373526, -0.16817617,  0.58779615],
       [-0.33410978,  0.44151586, -0.14673978, -0.4114933 ],
       [-0.18501085, -0.1278897 ,  0.5296257 ,  0.21039444]],
      dtype=float32), array([0., 0., 0., 0.], dtype=float32), array([[-0.58489895],
       [-0.6303506 ],
       [-1.0014054 ],
       [-0.02034676]], dtype=float32), array([0.], dtype=float32)]
net.get_weights()[1]
array([0., 0., 0., 0.], dtype=float32)

(3)从嵌套块收集参数

如果将多个块相互嵌套,参数命名约定是如何工作的。 首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1(name):
    return tf.keras.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(4, activation=tf.nn.relu)],
        name=name)

def block2():
    net = tf.keras.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add(block1(name=f'block-{i}'))
    return net

rgnet = tf.keras.Sequential()
rgnet.add(block2())
rgnet.add(tf.keras.layers.Dense(1))
rgnet(X)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[0.03218262],
       [0.04669464]], dtype=float32)>
print(rgnet.summary())
Model: "sequential_1"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 sequential_2 (Sequential)   (2, 4)                    80        
                                                                 
 dense_6 (Dense)             (2, 1)                    5         
                                                                 
=================================================================
Total params: 85
Trainable params: 85
Non-trainable params: 0
_________________________________________________________________
None

因为层是分层嵌套的,所以也可以像通过嵌套列表索引一样访问它们。 下面,访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet.layers[0].layers[1].layers[1].weights[1]
<tf.Variable 'dense_3/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>

5.2参数初始化

深度学习框架提供默认随机初始化, 也允许创建自定义初始化方法, 满足通过其他规则实现初始化权重。默认情况下,Keras会根据一个范围均匀地初始化权重矩阵, 这个范围是根据输入和输出维度计算出的。 偏置参数设置为0。 TensorFlow在根模块和keras.initializers模块中提供了各种初始化方法。

(1)内置默认初始化

首先调用内置的初始化器。 下面将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置(均重)参数设置为0。

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(
        4, activation=tf.nn.relu,
        kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.01),
        bias_initializer=tf.zeros_initializer()),
    tf.keras.layers.Dense(1)])

net(X)
net.weights[0], net.weights[1]
(<tf.Variable 'dense_7/kernel:0' shape=(4, 4) dtype=float32, numpy=
 array([[-0.0084911 ,  0.01987272,  0.0047598 ,  0.00767572],
        [ 0.00302977,  0.00571064,  0.01353499, -0.00716146],
        [ 0.01516861, -0.0042888 , -0.01337093,  0.01640075],
        [-0.00443652,  0.00357472,  0.003672  ,  0.00791739]],
       dtype=float32)>,
 <tf.Variable 'dense_7/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>)

还可以将所有参数初始化为给定的常数,比如初始化为1。

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(
        4, activation=tf.nn.relu,
        kernel_initializer=tf.keras.initializers.Constant(1),
        bias_initializer=tf.zeros_initializer()),
    tf.keras.layers.Dense(1),
])

net(X)
net.weights[0], net.weights[1]
(<tf.Variable 'dense_9/kernel:0' shape=(4, 4) dtype=float32, numpy=
 array([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]], dtype=float32)>,
 <tf.Variable 'dense_9/bias:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>)

还可以对某些块应用不同的初始化方法。 例如,下面使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(
        4,
        activation=tf.nn.relu,
        kernel_initializer=tf.keras.initializers.GlorotUniform()),
    tf.keras.layers.Dense(
        1, kernel_initializer=tf.keras.initializers.Constant(1)),
])

net(X)
print(net.layers[1].weights[0])
print(net.layers[2].weights[0])
<tf.Variable 'dense_11/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[ 0.05044675, -0.75048006, -0.27696246,  0.3049981 ],
       [-0.8364825 ,  0.71040255,  0.05052626,  0.6309851 ],
       [ 0.7461434 ,  0.43411523,  0.25171906, -0.76259345],
       [ 0.5316939 ,  0.4294545 , -0.22395748,  0.08069021]],
      dtype=float32)>
<tf.Variable 'dense_12/kernel:0' shape=(4, 1) dtype=float32, numpy=
array([[1.],
       [1.],
       [1.],
       [1.]], dtype=float32)>

(2)自定义初始化

深度学习框架没有提供所需要的初始化方法。例如使用以下的分布为任意权重参数 𝑤 定义初始化方法:
在这里插入图片描述

下面定义了一个Initializer的子类, 并实现了__call__函数。 该函数返回给定形状和数据类型的所需张量。

class MyInit(tf.keras.initializers.Initializer):
    def __call__(self, shape, dtype=None):
        data=tf.random.uniform(shape, -10, 10, dtype=dtype)
        factor=(tf.abs(data) >= 5)
        factor=tf.cast(factor, tf.float32)
        return data * factor

net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(
        4,
        activation=tf.nn.relu,
        kernel_initializer=MyInit()),
    tf.keras.layers.Dense(1),
])

net(X)
print(net.layers[1].weights[0])
<tf.Variable 'dense_13/kernel:0' shape=(4, 4) dtype=float32, numpy=
array([[-5.0103664,  6.178299 ,  0.       ,  6.052822 ],
       [-6.3095307,  6.418064 , -8.592429 ,  0.       ],
       [ 8.59478  , -8.356173 , -0.       , -0.       ],
       [-0.       ,  8.881723 , -8.509399 , -0.       ]], dtype=float32)>

也可以直接设置参数:

# assign(42)意味着将这个特定位置的权重值设置为42。
net.layers[1].weights[0][:].assign(net.layers[1].weights[0] + 1)
# assign(42)意味着将这个特定位置的权重值设置为42。
net.layers[1].weights[0][0, 0].assign(42)
net.layers[1].weights[0]

(3)参数绑定

在多个层间共享参数: 可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# tf.keras的表现有点不同。它会自动删除重复层
shared = tf.keras.layers.Dense(4, activation=tf.nn.relu)
net = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    shared,
    shared,
    tf.keras.layers.Dense(1),
])

net(X)
# 检查参数是否不同,查看网络层数。
print(len(net.layers) == 3)

6.延后初始化

延后初始化就是提前不指定输入维度,喂入数据时会自动指定。

到目前为止,忽略了建立网络时需要做的以下这些事情:

  • 定义了网络架构,但没有指定输入维度。
  • 添加层时没有指定前一层的输出维度。
  • 在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

如果不指定输入维度,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。

import tensorflow as tf

net = tf.keras.models.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(10),
])

因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,通过尝试访问以下参数进行确认。请注意,每个层对象都存在,但权重为空。 使用net.get_weights()将抛出一个错误,因为权重尚未初始化。

[net.layers[i].get_weights() for i in range(len(net.layers))]
[[], []]

将数据通过网络,最终使框架初始化参数。

X = tf.random.uniform((2, 20))
net(X)
[w.shape for w in net.get_weights()]

一旦知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。

7.自定义层

可以用创造性的方式组合不同的层,从而设计出适用于各种任务的架构。例如,研究人员发明了专门用于处理图像、文本、序列数据和执行动态规划的层。 有时会遇到或要自己发明一个现在在深度学习框架中还不存在的层,在这些情况下,必须构建自定义层。

7.1不带参数的层

构造一个没有任何参数的自定义层。下面的CenteredLayer类要从其输入中减去均值。 要构建它,只需继承基础层类并实现前向传播功能。

import tensorflow as tf


class CenteredLayer(tf.keras.Model):
    def __init__(self):
        super().__init__()

    def call(self, inputs):
        return inputs - tf.reduce_mean(inputs)

#向该层提供一些数据,验证它是否能按预期工作。
layer = CenteredLayer()
layer(tf.constant([1, 2, 3, 4, 5]))
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([-2, -1,  0,  1,  2])>

将层作为组件合并到更复杂的模型中:

net = tf.keras.Sequential([tf.keras.layers.Dense(128), CenteredLayer()])

作为额外的健全性检查,可以在向该网络发送随机数据后,检查均值是否为0。 由于处理的是浮点数,因为存储精度的原因,仍然可能会看到一个非常小的非零数。

Y = net(tf.random.uniform((4, 8)))
tf.reduce_mean(Y)
<tf.Tensor: shape=(), dtype=float32, numpy=2.561137e-09>

7.2带参数的层

定义具有参数的层, 这些参数可以通过训练进行调整。可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。 这样做的好处之一是:不需要为每个自定义层编写自定义的序列化程序。

现在,实现自定义版本的全连接层。 回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 在此实现中,使用修正线性单元作为激活函数。 该层需要输入参数:in_unitsunits,分别表示输入数和输出数。

class MyDense(tf.keras.Model):
    def __init__(self, units):
        super().__init__()
        self.units = units

    def build(self, X_shape):
        self.weight = self.add_weight(name='weight',
            shape=[X_shape[-1], self.units],
            initializer=tf.random_normal_initializer())
        self.bias = self.add_weight(
            name='bias', shape=[self.units],
            initializer=tf.zeros_initializer())

    def call(self, X):
        linear = tf.matmul(X, self.weight) + self.bias
        return tf.nn.relu(linear)

# 实例化MyDense类并访问其模型参数
dense = MyDense(3)
dense(tf.random.uniform((2, 5)))
dense.get_weights()
[array([[-0.00381189, -0.03383113,  0.00593808],
        [ 0.05353226, -0.00501231,  0.0306538 ],
        [-0.01644411,  0.01026293,  0.02238739],
        [ 0.01618866,  0.03604672,  0.01572673],
        [ 0.01472138,  0.01281747,  0.01037676]], dtype=float32),
 array([0., 0., 0.], dtype=float32)]

使用自定义层直接执行前向传播计算:

dense(tf.random.uniform((2, 5)))
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.02705063, 0.01465103, 0.03184884],
       [0.05492032, 0.01797221, 0.04979869]], dtype=float32)>

使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。

net = tf.keras.models.Sequential([MyDense(8), MyDense(1)])
net(tf.random.uniform((2, 64)))
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[0.],
       [0.]], dtype=float32)>

8.读写文件

8.1加载和保存张量

对于单个张量,可以直接调用load和save函数分别读写它们。 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

import numpy as np
import tensorflow as tf

x = tf.range(4)
np.save('x-file.npy', x)

现在可以将存储在文件中的数据读回内存。

x2 = np.load('x-file.npy', allow_pickle=True)
x2
array([0, 1, 2, 3])

可以存储一个张量列表,然后把它们读回内存。

y = tf.zeros(4)
np.save('xy-files.npy', [x, y])
x2, y2 = np.load('xy-files.npy', allow_pickle=True)
(x2, y2)
(array([0., 1., 2., 3.]), array([0., 0., 0., 0.]))

写入或读取从字符串映射到张量的字典。 当要读取或写入模型中的所有权重时,这很方便。

mydict = {'x': x, 'y': y}
np.save('mydict.npy', mydict)
mydict2 = np.load('mydict.npy', allow_pickle=True)
mydict2

8.2加载和保存模型参数

保存单个权重向量(或其他张量)确实有用, 但是如果想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。当然也是可以保存模型的。

class MLP(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.flatten = tf.keras.layers.Flatten()
        self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
        self.out = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.flatten(inputs)
        x = self.hidden(x)
        return self.out(x)

net = MLP()
X = tf.random.uniform((2, 20))
Y = net(X)

将模型的参数存储在一个叫做“mlp.params”的文件中。

net.save_weights('mlp.params')

实例化了原始多层感知机模型的一个备份。这里不需要随机初始化模型参数,而是直接读取文件中存储的参数。

clone = MLP()
clone.load_weights('mlp.params')

由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。 验证一下:

Y_clone = clone(X)
Y_clone == Y
<tf.Tensor: shape=(2, 10), dtype=bool, numpy=
array([[False, False, False, False, False, False, False, False, False,
        False],
       [False, False, False, False, False, False, False, False, False,
        False]])>

9.GPU使用

9.1 指定计算设备

可以指定用于存储和计算的设备,如CPU和GPU。 默认情况下,张量是在内存中创建的,然后使用CPU计算它。

import tensorflow as tf
#查询可用gpu的数量。
print(len(tf.config.experimental.list_physical_devices('GPU')))
tf.device('/CPU:0'), tf.device('/GPU:0'), tf.device('/GPU:1')

定义了两个方便的函数, 这两个函数允许在不存在所需所有GPU的情况下运行代码。

def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if len(tf.config.experimental.list_physical_devices('GPU')) >= i + 1:
        return tf.device(f'/GPU:{i}')
    return tf.device('/CPU:0')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    num_gpus = len(tf.config.experimental.list_physical_devices('GPU'))
    devices = [tf.device(f'/GPU:{i}') for i in range(num_gpus)]
    return devices if devices else [tf.device('/CPU:0')]

try_gpu(), try_gpu(10), try_all_gpus()

9.2张量与GPU

查询张量所在的设备。]默认情况下,张量是在CPU上创建的。需要注意的是,无论何时要对多个项进行操作, 它们都必须在同一个设备上。 例如,如果对两个张量求和, 需要确保两个张量都位于同一个设备上, 否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

x = tf.constant([1, 2, 3])
x.device

(1) 如何存储在GPU上

有几种方法可以在GPU上存储张量。 例如,可以在创建张量时指定存储设备。接 下来,在第一个gpu上创建张量变量X。 在GPU上创建的张量只消耗这个GPU的显存。

with try_gpu():
    X = tf.ones((2, 3))
X
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 1., 1.],
       [1., 1., 1.]], dtype=float32)>

假设至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。

with try_gpu(1):
    Y = tf.random.uniform((2, 3))
Y

(2) 复制

如果要计算X + Y,需要决定在哪里执行这个操作。可以将X传输到第二个GPU并在那里执行操作。 不要简单地X加上Y,因为这会导致异常, 运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败。 由于Y位于第二个GPU上,所以需要将X移到那里, 然后才能执行相加运算。
在这里插入图片描述

with try_gpu(1):
    Y = tf.random.uniform((2, 3))
print(Y)

with try_gpu(1):
    Z = X
print(X)
print(Z)

#现在数据在同一个GPU上(Z和Y都在),可以将它们相加。
print(Y + Z)

假设变量Z已经存在于第二个GPU上。 如果仍然在同一个设备作用域下调用Z2 = Z会发生什么? 它将返回Z,而不会复制并分配新内存。

with try_gpu(1):
    Z2 = Z
Z2 is Z

9.3神经网络与GPU

类似地,不仅变量可以指定GPU设备,神经网络模型可以指定GPU设备。

strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
    net = tf.keras.models.Sequential([
        tf.keras.layers.Dense(1)])

当输入为GPU上的张量时,模型将在同一GPU上计算结果。

net(X)

确认模型参数存储在同一个GPU上。

net.layers[0].weights[0].device, net.layers[0].weights[1].device
('/job:localhost/replica:0/task:0/device:GPU:0',
 '/job:localhost/replica:0/task:0/device:GPU:0')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/460731.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

oracle基础-子查询 备份

一、什么是子查询 子查询是在SQL语句内的另外一条select语句&#xff0c;也被称为内查询活着内select语句。在select、insert、update、delete命令中允许是一个表达式的地方都可以包含子查询&#xff0c;子查询也可以包含在另一个子查询中。 【例1.1】在Scott模式下&#xff0…

CSS扩展选择器

文章目录 1. 并集选择器2. 交集选择器3. 后代选择器4. 子代选择器5. 兄弟选择器5.1. 相邻兄弟选择器5.2. 通用兄弟选择器 6. 属性选择器7. 伪类选择器7.1. 动态伪类7.2. 结构伪类7.3. 否定伪类 8. 伪元素选择器9. Google 改进案例 1. 并集选择器 选中多个选择器对应的元素。一…

如何在Linux上使用git远程上传至gitee托管(add-commit-push指令详解)

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

Xpay源支付2.8.8免授权聚合免签系统

产品介绍 XPay是专为个人站长打造的聚合免签系统&#xff0c;拥有卓越的性能和丰富的功能。采用全新轻量化的界面UI&#xff0c;让您可以更加方便快捷地解决知识付费和运营赞助的难题。同时&#xff0c;它基于高性能的ThinkPHP 6.1.2 Layui 2.8.10 PearAdmin架构&#xff0c…

面向对象(下)

目录 01、static1.1、static的使用1.2、static应用举例1.3、单例(Singleton)设计模式 02、main方法的语法03、类的成员之四&#xff1a;代码块04、关键字&#xff1a;final05、抽象类与抽象方法5.1、多态的应用&#xff1a;模板方法设计模式(TemplateMethod) 06、接口(interfac…

使用reprepro+nginx搭建apt服务器

目录 项目背景 项目要求 项目开发过程 1、apt服务器的搭建 2、实现自定义指定源文件列表来实现apt update更新 3、实现软件启动时自动更新 4. source.list中镜像源地址的格式 项目开发的难点/坑点 总结 项目背景 前面写过一篇“利用Nginx搭建一个apt服务器”&#xff…

异次元发卡源码系统/荔枝发卡V3.0二次元风格发卡网全开源源码

– 支付系统&#xff0c;已经接入易支付及Z支付免签接口。 – 云更新&#xff0c;如果系统升级新版本&#xff0c;你无需进行繁琐操作&#xff0c;只需要在你的店铺后台就可以无缝完成升级。 – 商品销售&#xff0c;支持商品配图、会员价、游客价、邮件通知、卡密预选&#…

双线性插值缩放算法原理以及matlab与verilog的实现(二)

系列文章目录 双线性插值缩放算法原理以及matlab与verilog的实现&#xff08;一&#xff09; 文章目录 系列文章目录前言一、前提回顾二、FPGA实现步骤2.1 找到源图像四个像素点求目标像素点2.2 FPGA实现步骤2.3 总体框架2.4 ROM缓存模块2.5 VGA模块2.6 双线性算法模块 三、下…

【AI+应用】一步步搭建聊天机器人搭配多种国内外大模型以及api接口调用

如果你看过我之前写的一篇文章 【AI应用】怎么快速制作一个类chatGPT套壳网站&#xff0c; 你可能顺利地使用chatGPT、Gemini&#xff0c; 用得很happy。 突然有一天&#xff0c;你发现一些网站&#xff0c;除了chatGPT、Gemini &#xff0c;还可以切换使用国内外其他的大模型…

【原创】一文读懂RAG的来源、发展和前沿

检索增强生成(Retrieval Augmented Generation&#xff0c;RAG)结合了检索 (Retrieval) 和生成 (Generation) 两个过程&#xff0c;旨在提高机器生成文本的相关性、准确性和多样性。RAG通过在生成文本输出之前先检索大量相关信息&#xff0c;然后将这些检索到的信息作为上下文输…

练习题手撕总结

基础篇 1.基础知识&#xff08;时间复杂度、空间复杂度等&#xff09; 2.线性表&#xff08;顺序表、单链表&#xff09; 3.双链表、循环链表 4.队列 5.栈 6.递归算法 7.树、二叉树&#xff08;递归、非递归遍历&#xff09; 8.二叉搜索树&#xff08;BST&#xff09; 9.二分查…

FPGA静态时序分析与约束(三)、读懂vivado时序报告

系列文章目录 FPGA静态时序分析与约束&#xff08;一&#xff09;、理解亚稳态 FPGA静态时序分析与约束&#xff08;二&#xff09;、时序分析 文章目录 系列文章目录前言一、时序分析回顾二、打开vivado任意工程2.1 工程布局路由成功后&#xff0c;点击vivado左侧**IMPLEMENT…

浅易理解:非极大抑制NMS

什么是非极大抑制NMS 非极大值抑制&#xff08;Non-Maximum Suppression&#xff0c;简称NMS&#xff09;是一种在计算机视觉和图像处理领域中广泛使用的后处理技术&#xff0c;特别是在目标检测任务中。它的主要目的是解决目标检测过程中出现的重复检测问题&#xff0c;即对于…

家具工厂5G智能制造数字孪生可视化平台,推进家具行业数字化转型

家具制造5G智能制造工厂数字孪生可视化平台&#xff0c;推进家具行业数字化转型。随着科技的飞速发展&#xff0c;家具制造业正迎来一场前所未有的数字化转型。在这场家具制造业转型中&#xff0c;5G智能制造工厂数字孪生可视化平台发挥着至关重要的作用。 5G智能制造工厂数字孪…

深度学习模型部署(十)模型部署配套工具二

上篇blog讲了trtexec和onnx_graphsurgeon两个工具&#xff0c;一个用于将onnx转化为trt模型&#xff0c;另一个用于对onnx模型进行修改。这篇blog讲polygraphy和nsight systems&#xff0c;前者用于进行模型优化以及结果验证&#xff0c;后者用于性能分析。 polygraph polygra…

sqllab第二十三关通关笔记

知识点&#xff1a; mysqli_query() 返回值为资源型或布尔型如果内容为查询语句则返回资源型数据&#xff1b;如果内容为插入、更新、删除等语句则返回布尔类型结果mysql_fetch_array() 从结果集中取出一行作为关联数组或数字数组输入内容为指定查询的结果集单引号闭合绕过联…

hololens2发布unity设置

生成vs工程再向hololens发布时&#xff0c; Architecture选X64或ARM64都可以成功发布

爬虫3_爬取翻页URL不变的网站

之前实现了对大学排数据爬取&#xff1a;爬虫2_2019年549所中国大学排名. 近期复现代码&#xff0c;发现原网站升级&#xff0c;在翻页时&#xff0c;发现URL不改变&#xff0c;修改代码&#xff0c;使用网页自动化工具selenium实现对该类网站数据获取。 #-*- coding: UTF-8 -…

【物联网】Modbus 协议及Qinghub物联网平台应用

Modbus 协议简介 QingHub设计器在设计物联网数据采集时不可避免的需要针对Modbus协议的设备做相关数据采集&#xff0c;这里就我们的实际项目经验分享Modbus协议 你可以通过QingHub作业直接体验试用&#xff0c;也可以根据手册开发相应的代码块。 qinghub项目已经全面开源。 …

MC78L05ACDR2G线性稳压器芯片中文资料规格书PDF数据手册引脚图参数图片价格

产品概述&#xff1a; MC78L00A系列线性稳压器价格便宜&#xff0c;易于使用&#xff0c;适用于各种需要最高100mA的调节电源的应用。与大功率MC7800和MC78M00系列一样&#xff0c;这款稳压器也提供内部电流限制和高温关断&#xff0c;因此非常坚固耐用。在很多应用中&#xf…