【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

  • 1.模型原理
  • 2.数学公式
  • 3.文件结构
  • 4.Excel数据
  • 5.分块代码
    • 5.1 fun.m
    • 5.2 main.m
  • 6.完整代码
    • 6.1 fun.m
    • 6.2 main.m
  • 7.运行结果

1.模型原理

基于粒子群优化算法(Particle Swarm Optimization, PSO)优化BP神经网络的时间序列预测是一种结合了PSO和BP神经网络的方法,用于提高BP神经网络在时间序列预测任务中的性能。时间序列预测是指根据过去的时间序列数据,预测未来的时间序列值。BP神经网络是一种常用的前向人工神经网络,但在复杂的时间序列预测问题上可能陷入局部最优解。PSO是一种全局优化算法,可以帮助寻找更优的神经网络权重和偏置值,从而提高BP神经网络的预测精度。

以下是“基于粒子群优化算法优化BP神经网络的时间序列预测”的原理:

  1. BP神经网络简介
    BP神经网络是一种前向人工神经网络,由输入层、若干隐藏层和输出层组成。它通过前向传播计算输出,并通过反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。BP神经网络在时间序列预测问题中可以用于拟合非线性函数,并通过梯度下降法进行参数优化。

  2. 粒子群优化算法简介
    PSO是一种群体智能优化算法,受到鸟群觅食行为的启发。在PSO中,个体被称为“粒子”,它们在搜索空间中移动,并通过学习社会最优和个体最优位置来更新自己的位置和速度。每个粒子维护两个向量:速度向量和位置向量,它们决定了粒子在搜索空间中的移动方向和距离。

  3. 基于粒子群优化的BP神经网络优化
    在使用PSO优化BP神经网络时,我们将BP神经网络的权重和偏置作为待优化的参数。每个粒子表示一组可能的权重和偏置的取值,称为“粒子的位置”。PSO算法中的每个粒子都有一个适应度函数,用于评估其在时间序列预测问题中的表现。在这里,适应度函数可以是回归预测任务中的损失函数,如均方误差。

  4. PSO算法流程
    PSO算法的基本流程如下:

    • 初始化粒子群的位置和速度。
    • 计算每个粒子的适应度值(即神经网络在训练数据上的预测误差)。
    • 根据个体最优和全局最优位置更新粒子的速度和位置。
    • 重复上述步骤,直到满足停止条件(如达到最大迭代次数或达到预定的精度)。
  5. 优化过程
    在优化过程中,每个粒子代表了一组BP神经网络的权重和偏置。它们根据自身的适应度和周围粒子的表现来更新自己的位置和速度,以寻找更优的权重和偏置组合。通过迭代优化,粒子逐渐趋向于全局最优解,从而找到了最优的BP神经网络权重和偏置组合,以提高时间序列预测的性能。

  6. 应用于时间序列预测
    将PSO算法与BP神经网络结合应用于时间序列预测任务时,首先需要准备训练数据和测试数据。然后,利用PSO算法优化BP神经网络的权重和偏置,使其能够更好地拟合训练数据。最后,使用优化后的BP神经网络对测试数据进行预测,得到时间序列的预测结果。

总结起来,基于粒子群优化算法优化BP神经网络的时间序列预测方法,通过结合PSO算法的全局优化特性,帮助BP神经网络更好地拟合时间序列数据并提高预测精度。这种方法在时间序列预测任务中具有较好的性能,并且在应用于其他优化问题上也具有广泛的应用价值。

2.数学公式

当然可以!在下面,我将详细介绍“基于粒子群优化算法优化BP神经网络的时间序列预测”的原理,并带上公式:

  1. BP神经网络部分

假设我们有一个时间序列数据 ( X X X),其包含 ( T T T) 个时间步的观测值: X = { x 1 , x 2 , . . . , x T } X = \{x_1, x_2, ..., x_T\} X={x1,x2,...,xT},其中 ( x t x_t xt) 是时间步 ( t t t) 的输入数据。

在BP神经网络中,我们使用前向传播计算隐藏层和输出层的输出,然后使用反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。隐藏层和输出层的计算公式如下:

隐藏层的计算公式:
z h = W x h ⋅ x t + W h h ⋅ h t − 1 + b h z_h = W_{xh} \cdot x_t + W_{hh} \cdot h_{t-1} + b_h zh=Wxhxt+Whhht1+bh
h t = σ ( z h ) h_t = \sigma(z_h) ht=σ(zh)

输出层的计算公式:
z o = W h o ⋅ h t + b o z_o = W_{ho} \cdot h_t + b_o zo=Whoht+bo
y t = σ ( z o ) y_t = \sigma(z_o) yt=σ(zo)

其中,

  • ( h t h_t ht) 是隐藏层在时间步 ( t t t) 的输出(隐藏状态),
  • ( W x h W_{xh} Wxh) 是输入到隐藏层的权重矩阵,
  • ( W h h W_{hh} Whh) 是隐藏层上一时间步输出到当前时间步的隐藏层的权重矩阵,
  • ( b h b_h bh) 是隐藏层的偏置,
  • ( σ \sigma σ) 是激活函数(如 sigmoid 或 tanh)。
  1. 粒子群优化算法部分

在粒子群优化算法中,每个粒子代表一组可能的BP神经网络的权重和偏置,即一组解。这些粒子在搜索空间中移动,并通过学习社会最优和个体最优位置来更新自己的位置和速度。每个粒子维护两个向量:速度向量和位置向量,它们决定了粒子在搜索空间中的移动方向和距离。

假设第 ( i i i) 个粒子在时间步 ( t t t) 时的位置向量为 ( x i t x_{it} xit),速度向量为 ( v i t v_{it} vit),个体最优位置为 ( p i t p_{it} pit),全局最优位置为 ( p g t p_{gt} pgt)。

粒子更新的公式为:
v i t = ω ⋅ v i t + c 1 ⋅ r 1 ⋅ ( p i t − x i t ) + c 2 ⋅ r 2 ⋅ ( p g t − x i t ) v_{it} = \omega \cdot v_{it} + c_1 \cdot r_1 \cdot (p_{it} - x_{it}) + c_2 \cdot r_2 \cdot (p_{gt} - x_{it}) vit=ωvit+c1r1(pitxit)+c2r2(pgtxit)
x i t + 1 = x i t + v i t x_{it+1} = x_{it} + v_{it} xit+1=xit+vit

其中,

  • ( t t t) 是时间步,
  • ( ω \omega ω) 是惯性权重,控制粒子的惯性,
  • ( c 1 c_1 c1) 和 ( c 2 c_2 c2) 是学习因子,分别控制个体和全局的权重,
  • ( r 1 r_1 r1) 和 ( r 2 r_2 r2) 是随机数,用于增加随机性。

在每一次迭代中,通过计算每个粒子的适应度(即BP神经网络在训练数据上的预测误差),找到个体最优位置 ( p i t p_{it} pit) 和全局最优位置 ( p g t p_{gt} pgt),并更新粒子的速度和位置,直到达到停止条件(如达到最大迭代次数或达到预定的精度)为止。

通过以上的粒子群优化过程,每个粒子逐渐趋向于全局最优解,从而找到了最优的BP神经网络权重和偏置组合,在时间序列预测任务中表现出色。

请注意,上述公式中的权重矩阵和偏置是需要在训练过程中学习的模型参数。

3.文件结构

在这里插入图片描述

fun.m							% 适应度值计算
main.m							% 主函数
数据集.xlsx						% 可替换数据集

4.Excel数据

在这里插入图片描述

5.分块代码

5.1 fun.m

function error = fun(pop, hiddennum, net, p_train, t_train)

%% 节点个数

inputnum  = size(p_train, 1);   % 输入层节点数
outputnum = size(t_train, 1);   % 输出层节点数

%% 提取权值和阈值

w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

%% 网络赋值

net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%% 网络训练

net = train(net, p_train, t_train);

%% 仿真测试

t_sim1 = sim(net, p_train);

%% 适应度值

error = sqrt(sum((t_sim1 - t_train) .^ 2) ./ length(t_sim1));

5.2 main.m

%% 清空环境变量

warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%% 导入数据(时间序列的单列数据)

result = xlsread('数据集.xlsx');

%% 数据分析

num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%% 构造数据集

for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 划分训练集和测试集

temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%% 数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%% 节点个数

inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数

%% 建立网络

net = newff(p_train, t_train, hiddennum);

%% 设置训练参数

net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口

%% 参数初始化

c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  2.0;        % 最大边界
popmin  = -2.0;        % 最小边界

%% 节点总数

numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;

for i = 1 : sizepop
    pop(i, :) = rands(1, numsum);  % 初始化种群
    V(i, :) = rands(1, numsum);    % 初始化速度
    fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end

%% 个体极值和群体极值

[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%% 迭代寻优

for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end

%% 提取最优初始权值和阈值

w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...
    + hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

%% 最优值赋值

net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%% 打开训练窗口

net.trainParam.showWindow = 1;        % 打开窗口

%% 网络训练

net = train(net, p_train, t_train);

%% 仿真预测

t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%% 数据反归一化

T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%% 均方根误差

error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%% 绘图

figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%% 误差曲线迭代图

figure
plot(1 : length(BestFit), BestFit, 'LineWidth', 1.5);
xlabel('粒子群迭代次数');
ylabel('适应度值');
xlim([1, length(BestFit)])
string = {'模型迭代误差变化'};
title(string)
grid on

%% 相关指标计算

%  R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

6.完整代码

6.1 fun.m

function error = fun(pop, hiddennum, net, p_train, t_train)

%%  节点个数
inputnum  = size(p_train, 1);   % 输入层节点数
outputnum = size(t_train, 1);   % 输出层节点数

%%  提取权值和阈值
w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
 
%%  网络赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%%  网络训练
net = train(net, p_train, t_train);

%%  仿真测试
t_sim1 = sim(net, p_train);

%%  适应度值
error = sqrt(sum((t_sim1 - t_train) .^ 2) ./ length(t_sim1));

6.2 main.m

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数

%%  建立网络
net = newff(p_train, t_train, hiddennum);

%%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口

%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  2.0;        % 最大边界
popmin  = -2.0;        % 最小边界

%%  节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;

for i = 1 : sizepop
    pop(i, :) = rands(1, numsum);  % 初始化种群
    V(i, :) = rands(1, numsum);    % 初始化速度
    fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end

%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end

%%  提取最优初始权值和阈值
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...
    + hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

%%  最优值赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%%  打开训练窗口 
net.trainParam.showWindow = 1;        % 打开窗口

%%  网络训练
net = train(net, p_train, t_train);

%%  仿真预测
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  误差曲线迭代图
figure
plot(1 : length(BestFit), BestFit, 'LineWidth', 1.5);
xlabel('粒子群迭代次数');
ylabel('适应度值');
xlim([1, length(BestFit)])
string = {'模型迭代误差变化'};
title(string)
grid on

%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

7.运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/46038.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu 18.04 磁盘太满无法进入系统

安装了一个压缩包&#xff0c;装了一半提示磁盘空间少导致安装失败。我也没在意&#xff0c;退出虚拟机打算扩展硬盘。等我在虚拟机设置中完成扩展操作&#xff0c;准备进入虚拟机内部进行操作时&#xff0c;发现登录不进去了 shift 登入GUN GRUB设置项的问题 网上都是在开机…

持续贡献开源力量,棱镜七彩加入openKylin

近日&#xff0c;棱镜七彩签署 openKylin 社区 CLA&#xff08;Contributor License Agreement 贡献者许可协议&#xff09;&#xff0c;正式加入openKylin 开源社区。 棱镜七彩成立于2016年&#xff0c;是一家专注于开源安全、软件供应链安全的创新型科技企业。自成立以来&…

Cesium态势标绘专题-圆角矩形(标绘+编辑)

标绘专题介绍:态势标绘专题介绍_总要学点什么的博客-CSDN博客 入口文件:Cesium态势标绘专题-入口_总要学点什么的博客-CSDN博客 辅助文件:Cesium态势标绘专题-辅助文件_总要学点什么的博客-CSDN博客 本专题没有废话,只有代码,代码中涉及到的引入文件方法,从上面三个链…

剑指offer41.数据流中的中位数

我一开始的想法是既然要找中位数&#xff0c;那肯定要排序&#xff0c;而且这个数据结构肯定要能动态的添加数据的&#xff0c;肯定不能用数组&#xff0c;于是我想到了用优先队列&#xff0c;它自己会排序都不用我写&#xff0c;所以addNum方法直接调用就可以&#xff0c;但是…

小创业公司死亡剧本

感觉蛮真实的&#xff1b;很多小创业公司没有阿里华为的命&#xff0c;却得了阿里华为的病。小的创业公司要想活无非以下几点&#xff1a; 1 现金流&#xff0c;现金流&#xff0c;现金流&#xff1b; 2 产品&#xff0c;找痛点&#xff0c;不要搞伪需求&#xff1b; 3 根据公司…

让婚礼策划展示小程序成为你的必备利器

在当今互联网时代&#xff0c;微信小程序已经成为了很多企业和个人展示自己产品和服务的重要渠道。如果你想学习微信小程序开发&#xff0c;下面将为你介绍一些基本步骤。 首先&#xff0c;你需要注册并登录一个第三方小程序制作平台&#xff0c;比如乔拓云平台。这些平台提供了…

Git-分布式版本控制工具

Git仓库&#xff1a;本地和远程 获取git仓库&#xff1a; 本地初始化Git仓库&#xff08;创建空目录&#xff0c;右键git bansh&#xff0c;执行git init&#xff09;远程仓库克隆&#xff0c;git clone 远程仓库地址 版本库&#xff1a;.git隐藏文件夹&#xff0c;储存配置信…

【SCI一区】互联燃料电池混合动力汽车通过信号交叉口的生态驾驶双层凸优化(Matlab代码实现)

目录 &#x1f4a5;1 概述 1.2 电动车动力学方程 1.3 电池模型 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码、数据、文章讲解 &#x1f4a5;1 概述 文献来源&#xff1a; 随着车辆互联性的出现&#xff0c;互联汽车 (CVs) 在增强道路安全、改…

Android平台如何实现第三方模块编码后(H.264/H.265/AAC/PCMA/PCMU)数据实时预览播放

技术诉求 我们在做GB28181设备对接模块和RTMP直播推送模块的时候&#xff0c;遇到这样的技术需求&#xff0c;设备&#xff08;如执法记录仪&#xff09;侧除了采集传统的摄像头外&#xff0c;还需要对接比如大疆等第三方数据源&#xff0c;确保按照GB28181规范和RTMP协议规范…

量化交易——python数据分析及可视化

该项目分为两个部分&#xff1a;一是数据计算&#xff0c;二是可视化&#xff0c;三是MACD策略 一、计算MACD 1、数据部分 数据来源&#xff1a;tushare 数据字段包含&#xff1a;日期&#xff0c;开盘价&#xff0c;收盘价&#xff0c;最低价&#xff0c;最高价&#xff0c…

C# 用队列实现栈

225 用队列实现栈 请你仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、top、pop 和 empty&#xff09;。 实现 MyStack 类&#xff1a; void push(int x) 将元素 x 压入栈顶。 int pop() 移除并返…

数分面试题-SQL常见面试题型1

目录标题 1、连续时间问题1.1 最近一周内的活跃天数1.2 每个用户一周内最大连续活跃天数1.3 计算截至当前&#xff0c;每个用户已经连续签到的天数 2、时间间隔问题举例3、sql窗口分析函数3.1 有一个日志登陆列表&#xff0c;获取用户在某个页面停留时长3.2 寻找至少连续出现3次…

苍穹外卖-day08 java实现 微信支付

苍穹外卖-day08 课程内容 导入地址簿功能代码用户下单订单支付 功能实现&#xff1a;用户下单、订单支付 用户下单效果图&#xff1a; 订单支付效果图&#xff1a; 1. 导入地址簿功能代码 1.1 需求分析和设计 1.1.1 产品原型 地址簿&#xff0c;指的是消费者用户的地址信息&…

GPT-3.5:ChatGPT的奇妙之处和革命性进步

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

从小白到大神之路之学习运维第67天-------Tomcat应用服务 WEB服务

第三阶段基础 时 间&#xff1a;2023年7月25日 参加人&#xff1a;全班人员 内 容&#xff1a; Tomcat应用服务 WEB服务 目录 一、中间件产品介绍 二、Tomcat软件简介 三、Tomcat应用场景 四、安装配置Tomcat 五、配置目录及文件说明 &#xff08;一&#xff09;to…

【Java】Java多线程编程基础

文章目录 1. 进程与线程1.1 进程与线程的基本认识1.1.1 进程&#xff08;Process&#xff09;1.1.2 线程&#xff08;Thread&#xff09; 1.2 为什么会有线程1.2.1 以看视频为例 2. 多线程实现2.1 Thread类实现多线程2.2 Runnable接口实现多线程2.3 Callable接口实现多线程2.3 …

Oracle输出文本平面(CSV、XML)文本数据详细过程

此过程是提供给前端,调用的接口,为报表提供”下载“功能。以下是本人在测试环境的测试,有什么不足的地方,请留言指教,谢谢。 1、测试表 分别对测试表输出csv、xml两种格式文件数据。前期的准备工作。 --在服务器端创建directory,用管理员用户 create or replace directo…

win10计算器无法打开

问题背景: 打开计算器报错&#xff0c;显示无法打开应用&#xff0c;请打开应用商店获取更多信息。 解决过程 网上试了很多方法&#xff0c;看的最多的是 1、点开计算器重置应用 2、输入命令重新安装 。。。。。。。 说实话都没解决 最后看到这三个图标后&#xff0c;突然…

DAY2,Qt(继续完善登录框,信号与槽的使用 )

1.继续完善登录框&#xff0c;当登录成功时&#xff0c;关闭登录界面&#xff0c;跳转到新的界面中&#xff0c;来回切换页面&#xff1b; ---mychat.h chatroom.h---两个页面头文件 #ifndef MYCHAT_H #define MYCHAT_H#include <QWidget> #include <QDebug> /…

【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码&#xff08;一&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存&#xff08;二&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型部署&#xff08;三&#xff09; 【如何训…