量化交易——python数据分析及可视化

该项目分为两个部分:一是数据计算,二是可视化,三是MACD策略

一、计算MACD

1、数据部分

数据来源:tushare
数据字段包含:日期,开盘价,收盘价,最低价,最高价,涨跌
需要计算的数据:macd,diff,dea

2、MACD的计算

(1)计算指数移动平均值(EMA)

12日EMA的算式为
EMA(12)=前一日EMA(12)×11/13+今日收盘价×2/13
26日EMA的算式为
EMA(26)=前一日EMA(26)×25/27+今日收盘价×2/27

(2)计算离差值(DIF)

DIF=今日EMA(12)-今日EMA(26)

(3)计算DIF的9日EMA

根据离差值计算其9日的EMA,即离差平均值,是所求的MACD值。为了不与指标原名相混淆,此值又名
DEA或DEM。
今日DEA(MACD)=前一日DEA×8/10+今日DIF×2/10。
计算出的DIF和DEA的数值均为正值或负值。
用(DIF-DEA)×2即为MACD柱状图。

二、可视化

1、可视化工具:pyecharts

pyecharts官网
在这里插入图片描述

三、MACD策略

代码实现如下:


from typing import List, Sequence, Union
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.charts import Kline, Line, Bar, Grid

# 数据
#时间,
#ema重构版
import pandas as pd
import numpy as np
import tushare as ts
def macd(code,start_date,end_date):
    '''
    获取数据
    预处理
    计算股票的ema、dif、dea、macd
    主要有9日,12日,26日

    '''
    #获取数据
    pro=ts.pro_api()
    #获取日k线数据
    df=pro.daily(ts_code=code,start_date=start_date,end_date=end_date)
    #删除不需要的数据
    df=df.drop('ts_code',axis=1)
    df=df.drop('pre_close',axis=1)
    df=df.drop('change',axis=1)
    df=df.drop('pct_chg',axis=1)
    df=df.drop('amount',axis=1)
    df=df.sort_values(by='trade_date')
    #将成交量缩小一万倍
    df.loc[:,['vol']]=df.loc[:,['vol']].apply(lambda x:x/10000)
    df.loc[:,['vol']]=df.loc[:,['vol']].round(2)
    '''
    需要输出哪些数据?
    return:    
    日期,开盘价,收盘价,最低价,最高价,涨跌,macd,dif,dea
    date,open,close,low,high,vol,涨跌,macd,diff,dea

    '''
    #ema计算函数
    def ema(num,data=df):
        ema = [data['close'][0]] * len(data)
        for i in range(1, len(data)):
            ema[i] = ema[i-1] * (num-1)/(num+1) + data['close'][i] * 2/(num+1)
        return ema
    #计算dea
    def dea(num,data):#传入数组numpy.array
        dea = [data[0]] * len(data)
        for i in range(1, len(data)):
            dea[i] = dea[i-1] * (num-1)/(num+1) + data[i] * 2/(num+1)
        return np.array(dea)
    ema_12=np.array(ema(12))
    ema_26=np.array(ema(26))
    dif=ema_12-ema_26
    dea=dea(9,dif)
    macd=(dif-dea)*2
    #转化为pd
    df1={'macd':macd,'dif':dif,'dea':dea}
    df1=pd.DataFrame(df1)
    #连接数据
    df=df.join(df1)
    df=df.round(2)
    print(df)
    #判断涨跌,1为涨,0为跌
    def f(x):
        if x>=0:
            return 1
        else:
            return 0
    
    x=(df['close']-df['open']).apply(f)
    #调整列顺序
    df=df.loc[:,['trade_date','open','close','low','high','vol','macd','dif','dea']]
    #插入涨跌数据
    df.insert(loc=6,column='x',value=x)
    return df.values#转化为列表

macd=macd(code='000001.SZ',start_date='20230101',end_date='20230320')
echarts_data =macd.tolist()
print(type(echarts_data))
print(echarts_data)
'''
echarts_data = [
    ["2015-10-16", 18.4, 18.58, 18.33, 18.79, 67.00, 1, 0.04, 0.11, 0.09],
    ["2015-10-19", 18.56, 18.25, 18.19, 18.56, 55.00, 0, -0.00, 0.08, 0.09],
   
    ["2016-12-30", 17.53, 17.6, 17.47, 17.61, 22.00, 0, -0.05, -0.03, -0.01],
    ["2017-01-03", 17.6, 17.92, 17.57, 17.98, 28.00, 1, 0.00, 0.00, 0.00],
]
'''
def split_data(origin_data) -> dict:
    datas = []
    times = []
    vols = []
    macds = []
    difs = []
    deas = []

    for i in range(len(origin_data)):
        datas.append(origin_data[i][1:])
        times.append(origin_data[i][0:1][0])
        vols.append(origin_data[i][5])
        macds.append(origin_data[i][7])
        difs.append(origin_data[i][8])
        deas.append(origin_data[i][9])
    vols = [int(v) for v in vols]

    return {
        "datas": datas,
        "times": times,
        "vols": vols,
        "macds": macds,
        "difs": difs,
        "deas": deas,
    }


def split_data_part() -> Sequence:
    mark_line_data = []
    idx = 0
    tag = 0
    vols = 0
    for i in range(len(data["times"])):
        if data["datas"][i][5] != 0 and tag == 0:
            idx = i
            vols = data["datas"][i][4]
            tag = 1
        if tag == 1:
            vols += data["datas"][i][4]
        if data["datas"][i][5] != 0 or tag == 1:
            mark_line_data.append(
                [
                    {
                        "xAxis": idx,
                        "yAxis": float("%.2f" % data["datas"][idx][3])
                        if data["datas"][idx][1] > data["datas"][idx][0]
                        else float("%.2f" % data["datas"][idx][2]),
                        "value": vols,
                    },
                    {
                        "xAxis": i,
                        "yAxis": float("%.2f" % data["datas"][i][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                    },
                ]
            )
            idx = i
            vols = data["datas"][i][4]
            tag = 2
        if tag == 2:
            vols += data["datas"][i][4]
        if data["datas"][i][5] != 0 and tag == 2:
            mark_line_data.append(
                [
                    {
                        "xAxis": idx,
                        "yAxis": float("%.2f" % data["datas"][idx][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                        "value": str(float("%.2f" % (vols / (i - idx + 1)))) + " M",
                    },
                    {
                        "xAxis": i,
                        "yAxis": float("%.2f" % data["datas"][i][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                    },
                ]
            )
            idx = i
            vols = data["datas"][i][4]
    return mark_line_data


def calculate_ma(day_count: int):
    result: List[Union[float, str]] = []

    for i in range(len(data["times"])):
        if i < day_count:
            result.append("-")
            continue
        sum_total = 0.0
        for j in range(day_count):
            sum_total += float(data["datas"][i - j][1])
        result.append(abs(float("%.2f" % (sum_total / day_count))))
    return result


def draw_chart():
    kline = (
        Kline()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="",
            y_axis=data["datas"],
            itemstyle_opts=opts.ItemStyleOpts(
                color="#ef232a",
                color0="#14b143",
                border_color="#ef232a",
                border_color0="#14b143",
            ),
            markpoint_opts=opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="最大值"),
                    opts.MarkPointItem(type_="min", name="最小值"),
                ]
            ),
            markline_opts=opts.MarkLineOpts(
                label_opts=opts.LabelOpts(
                    position="middle", color="blue", font_size=15
                ),
                data=split_data_part(),
                symbol=["circle", "none"],
            ),
        )
        .set_series_opts(
            markarea_opts=opts.MarkAreaOpts(is_silent=True, data=split_data_part())
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="K线周期图表", pos_left="0"),
            xaxis_opts=opts.AxisOpts(
                type_="category",
                is_scale=True,
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True)
            ),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"),
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=False, type_="inside", xaxis_index=[0, 0], range_end=100
                ),
                opts.DataZoomOpts(
                    is_show=True, xaxis_index=[0, 1], pos_top="97%", range_end=100
                ),
                opts.DataZoomOpts(is_show=False, xaxis_index=[0, 2], range_end=100),
            ],
            # 三个图的 axis 连在一块
            # axispointer_opts=opts.AxisPointerOpts(
            #     is_show=True,
            #     link=[{"xAxisIndex": "all"}],
            #     label=opts.LabelOpts(background_color="#777"),
            # ),
        )
    )

    kline_line = (
        Line()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="MA5",
            y_axis=calculate_ma(day_count=5),
            is_smooth=True,
            linestyle_opts=opts.LineStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                split_number=3,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True),
            ),
        )
    )
    # Overlap Kline + Line
    overlap_kline_line = kline.overlap(kline_line)

    # Bar-1
    bar_1 = (
        Bar()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="Volumn",
            y_axis=data["vols"],
            xaxis_index=1,
            yaxis_index=1,
            label_opts=opts.LabelOpts(is_show=False),
            # 根据 echarts demo 的原版是这么写的
            # itemstyle_opts=opts.ItemStyleOpts(
            #     color=JsCode("""
            #     function(params) {
            #         var colorList;
            #         if (data.datas[params.dataIndex][1]>data.datas[params.dataIndex][0]) {
            #           colorList = '#ef232a';
            #         } else {
            #           colorList = '#14b143';
            #         }
            #         return colorList;
            #     }
            #     """)
            # )
            # 改进后在 grid 中 add_js_funcs 后变成如下
            itemstyle_opts=opts.ItemStyleOpts(
                color=JsCode(
                    """
                function(params) {
                    var colorList;
                    if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) {
                        colorList = '#ef232a';
                    } else {
                        colorList = '#14b143';
                    }
                    return colorList;
                }
                """
                )
            ),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    # Bar-2 (Overlap Bar + Line)
    bar_2 = (
        Bar()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="MACD",
            y_axis=data["macds"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
            itemstyle_opts=opts.ItemStyleOpts(
                color=JsCode(
                    """
                        function(params) {
                            var colorList;
                            if (params.data >= 0) {
                              colorList = '#ef232a';
                            } else {
                              colorList = '#14b143';
                            }
                            return colorList;
                        }
                        """
                )
            ),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=2,
                split_number=4,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    line_2 = (
        Line()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="DIF",
            y_axis=data["difs"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="DIF",
            y_axis=data["deas"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(legend_opts=opts.LegendOpts(is_show=False))
    )
    # 最下面的柱状图和折线图
    overlap_bar_line = bar_2.overlap(line_2)

    # 最后的 Grid
    grid_chart = Grid()

    # 这个是为了把 data.datas 这个数据写入到 html 中,还没想到怎么跨 series 传值
    # demo 中的代码也是用全局变量传的
    grid_chart.add_js_funcs("var barData = {}".format(data["datas"]))

    # K线图和 MA5 的折线图
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="3%", pos_right="1%", height="60%"),
    )
    # Volumn 柱状图
    grid_chart.add(
        bar_1,
        grid_opts=opts.GridOpts(
            pos_left="3%", pos_right="1%", pos_top="71%", height="10%"
        ),
    )
    # MACD DIFS DEAS
    grid_chart.add(
        overlap_bar_line,
        grid_opts=opts.GridOpts(
            pos_left="3%", pos_right="1%", pos_top="82%", height="14%"
        ),
    )
    grid_chart.render("professional_kline_chart.html")


if __name__ == "__main__":
    data = split_data(origin_data=echarts_data)
    draw_chart()

文章持续更新中。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/46017.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C# 用队列实现栈

225 用队列实现栈 请你仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、top、pop 和 empty&#xff09;。 实现 MyStack 类&#xff1a; void push(int x) 将元素 x 压入栈顶。 int pop() 移除并返…

数分面试题-SQL常见面试题型1

目录标题 1、连续时间问题1.1 最近一周内的活跃天数1.2 每个用户一周内最大连续活跃天数1.3 计算截至当前&#xff0c;每个用户已经连续签到的天数 2、时间间隔问题举例3、sql窗口分析函数3.1 有一个日志登陆列表&#xff0c;获取用户在某个页面停留时长3.2 寻找至少连续出现3次…

苍穹外卖-day08 java实现 微信支付

苍穹外卖-day08 课程内容 导入地址簿功能代码用户下单订单支付 功能实现&#xff1a;用户下单、订单支付 用户下单效果图&#xff1a; 订单支付效果图&#xff1a; 1. 导入地址簿功能代码 1.1 需求分析和设计 1.1.1 产品原型 地址簿&#xff0c;指的是消费者用户的地址信息&…

GPT-3.5:ChatGPT的奇妙之处和革命性进步

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

从小白到大神之路之学习运维第67天-------Tomcat应用服务 WEB服务

第三阶段基础 时 间&#xff1a;2023年7月25日 参加人&#xff1a;全班人员 内 容&#xff1a; Tomcat应用服务 WEB服务 目录 一、中间件产品介绍 二、Tomcat软件简介 三、Tomcat应用场景 四、安装配置Tomcat 五、配置目录及文件说明 &#xff08;一&#xff09;to…

【Java】Java多线程编程基础

文章目录 1. 进程与线程1.1 进程与线程的基本认识1.1.1 进程&#xff08;Process&#xff09;1.1.2 线程&#xff08;Thread&#xff09; 1.2 为什么会有线程1.2.1 以看视频为例 2. 多线程实现2.1 Thread类实现多线程2.2 Runnable接口实现多线程2.3 Callable接口实现多线程2.3 …

Oracle输出文本平面(CSV、XML)文本数据详细过程

此过程是提供给前端,调用的接口,为报表提供”下载“功能。以下是本人在测试环境的测试,有什么不足的地方,请留言指教,谢谢。 1、测试表 分别对测试表输出csv、xml两种格式文件数据。前期的准备工作。 --在服务器端创建directory,用管理员用户 create or replace directo…

win10计算器无法打开

问题背景: 打开计算器报错&#xff0c;显示无法打开应用&#xff0c;请打开应用商店获取更多信息。 解决过程 网上试了很多方法&#xff0c;看的最多的是 1、点开计算器重置应用 2、输入命令重新安装 。。。。。。。 说实话都没解决 最后看到这三个图标后&#xff0c;突然…

DAY2,Qt(继续完善登录框,信号与槽的使用 )

1.继续完善登录框&#xff0c;当登录成功时&#xff0c;关闭登录界面&#xff0c;跳转到新的界面中&#xff0c;来回切换页面&#xff1b; ---mychat.h chatroom.h---两个页面头文件 #ifndef MYCHAT_H #define MYCHAT_H#include <QWidget> #include <QDebug> /…

【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码&#xff08;一&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存&#xff08;二&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型部署&#xff08;三&#xff09; 【如何训…

ARM异常处理

一、异常二、异常处理机制三、ARM异常源四、ARM异常模式五、ARM异常响应CPSR寄存器ARM寄存器 六、异常向量表七、异常返回八、IRQ异常举例九、异常优先级十、FIQ和IRQ 一、异常 概念 处理器在正常执行程序的过程中可能会遇到一些不正常的事件发生 这时处理器就要将当前的程序暂…

【简单认识MySQL的MHA高可用配置】

文章目录 一、简介1、概述2、MHA 的组成3&#xff0e;MHA 的特点4、MHA工作原理 二、搭建MHA高可用数据库群集1.主从复制2.MHA配置 三、故障模拟四、故障修复步骤&#xff1a; 一、简介 1、概述 MHA&#xff08;Master High Availability&#xff09;是一套优秀的MySQL高可用…

【Kafka】常用操作

1、基本概念 1. 消息&#xff1a; Kafka是一个分布式流处理平台&#xff0c;它通过消息进行数据的传输和存储。消息是Kafka中的基本单元&#xff0c;可以包含任意类型的数据。 2. 生产者&#xff08;Producer&#xff09;&#xff1a; 生产者负责向Kafka主题发送消息。它将消息…

web自动化测试进阶篇05 ——— 界面交互场景测试

&#x1f60f;作者简介&#xff1a;博主是一位测试管理者&#xff0c;同时也是一名对外企业兼职讲师。 &#x1f4e1;主页地址&#xff1a;【Austin_zhai】 &#x1f646;目的与景愿&#xff1a;旨在于能帮助更多的测试行业人员提升软硬技能&#xff0c;分享行业相关最新信息。…

stm32 IIC通信

文章目录 IIC 通信一、硬件电路二、IIC时序基本单元三、IIC时序1.指定地址写2.当前地址读3.指定地址读 IIC 通信 IIC总线是一种通用数据总线&#xff0c;有两根通信线&#xff08;SCL(串行时钟总线),SDA&#xff08;串行数据总线&#xff09;&#xff09;。 特点&#xff1a;同…

【SpringCloud Alibaba】(二)微服务环境搭建

1. 项目流程搭建 整个项目主要分为 用户微服务、商品微服务和订单微服务&#xff0c;整个过程模拟的是用户下单扣减库存的操作。这里&#xff0c;为了简化整个流程&#xff0c;将商品的库存信息保存到了商品数据表&#xff0c;同时&#xff0c;使用商品微服务来扣减库存。小伙…

Rust vs Go:常用语法对比(十一)

题目来自 Rust Vs Go: Which Language Is Better For Developing High-Performance Applications?[1] 202. Sum of squares Calculate the sum of squares s of data, an array of floating point values. 计算平方和 package mainimport ( "math")func main() { da…

android数据的储存、文件的储存、SharedPreferences储存、SQLite的基本用法

一、文件的储存 1、将数据储存到文件中 Context类中提供了openfileOutput()方法&#xff0c;用来获取一个文件流&#xff0c;这个方法接收两个参数&#xff0c;第一个参数是文件名&#xff0c;在文件创建的时候使用的就是这个名称&#xff0c;注意这里指定的文件名不可以包含…

React AntDesign写一个导出数据的提示语 上面有跳转的路径,或者点击知道了,关闭该弹层

效果如下&#xff1a; 代码如下&#xff1a; ForwardDataCenterModal(_blank);export const ForwardDataCenterModal (target?: string) > {let contentBefore React.createElement(span, null, 数据正在处理中&#xff0c;请稍后前往);let contentAfter React.creat…

JAVA基础-集合(List与Map)

目录 引言 一&#xff0c;Collection集合 1.1,List接口 1.1.1&#xff0c;ArrayList 1.1.1.1&#xff0c;ArrayList的add&#xff08;&#xff09;添加方法 1.1.1.2&#xff0c;ArrayList的remove&#xff08;&#xff09;删除方法 1.1.1.3&#xff0c;ArrayList的contai…