客户案例|100M 768 维向量数据,Zilliz Cloud 稳定支持 Shulex VOC 业务场景

c6904182591f5874288c93982cc0cc4f.png

日前,国际化 VOC SaaS 公司数里行间(Shulex)将上亿数据量的核心业务从开源向量数据库 Milvus 迁移至全托管的向量数据库云服务 Zilliz Cloud。

相比于 Milvus,Zilliz Cloud 实现了 Shulex VOC 评论分析洞察报告生成速度 30% 的提升,VOC 智能客服召回率 98%,且系统稳定,0 宕机,大大降低了企业在向量数据库的运维成本。

e43072c15ef8e06dc615d24e59507d05.png

01.

从内卷到出海,Shulex 为电商打造基于大模型的 VOC 服务

近几年,国内电商市场竞争日益激烈,跨境电商异军突起,这也无形中增高了中小商家入局的门槛,Shulex 正是在这样的背景下迅速崛起。Shulex 专注品牌出海,面向海外客户和中国出海客户,基于大模型为企业提供 VOC SaaS 服务,帮助企业通过数智化来引领产品创新、驱动客户品牌增长。

02.

从 Milvus 到 Zilliz Cloud,向量数据库支撑 Shulex 核心业务场景

随着业务的高速发展,仅在 VOC 评论分析业务上,Shulex 就训练了 10,000 条以上电商类目的评论标签,产生了上亿规模的向量数据。以往基于开源向量数据库 Milvus 自建方案,费时费力,稳定性无法保障,运维成本非常高昂,当出现故障的时候往往需要几个小时甚至一天才能恢复,运营疲于处理由于系统不稳定导致的客户吐槽和投诉,客户满意度也持续走低。

Shulex 技术专家李辰辉表示:“业务发展到这个阶段,对向量数据库的要求也就更严苛了,要能弹性扩容以支撑海量的向量存储与搜索,向量匹配速度要更快、SLA 足够高,运维成本一定要够低。”

在与 Milvus 的背后商业公司 Zilliz 的专家团队进行充分沟通后,Shulex 技术团队决定将核心业务的向量数据库部分搬迁至 Milvus 的全托管云服务 Zilliz Cloud 上。目前 Zilliz Cloud 主要支持了 Shulex 的 VOC 评论分析及智能客服两大块核心业务。

| 文本搜索场景——VOC 评论分析

Shulex 是排名第一的 Amazon ChatGPT 选品工具,而 VOC 评论分析服务核心是通过向量数据库对海量的 Amazon 评论/社媒数据,进行分类打标和实时分析,为客户提供实时的商品评论洞察报告,包括但不限于:用户画像、使用场景、购买动机、商品卖点、商品不足点等。

向量数据库是该业务场景的关键组件,基于 Zilliz Cloud 的 VOC 评论分析流程包含建库、选品、分析样本、全量打标、报表生成 5 个步骤,具体来看:

  • 建立用来判断评论的标签库:在向量数据里面存储的表结构包括评论文本、评论的 embedding、评论的正负情感标签等等;

  • 选择待分析的商品类目:在上万个类目的商品中选择感兴趣的品类作为后续进行评论分析的对象;

  • 基于大模型的评论分析:选择上一步中品类的数万条评论(包含正负评论、意思相近的评论)输入给大模型,让 GPT-4 对每个评论进行标签,将这些标签而后进行聚类后生成标签的样本库;

  • 用向量数据库做分类打标:将生成的标签样本输出给向量数据库里进行该类目商品的全部评论 embedding数据的检索,结合向量数据库来进行分类,判断这些评论的正负情感;

  • 生成结构化的统计报表:基于向量数据库的分类情况,进行用户对该商品属性的情感、正负向的分析,然后生成报表。

96a4782f91fdb27b0da312125e544afa.png

图 1 |基于 Zilliz Cloud 的 VOC 评论分析流程

Zilliz Cloud 的引入在 Shulex VOC 评论分析业务中取得的收益显著,总结而言包括以下几点:

  • 报表生成速度提升 30%:Zilliz Cloud 提供更高性能的向量搜索能力,其搜索引擎性能比开源 Milvus 提升超过 5 倍,稳定支持了 1000 QPS 的商品评论的高频次搜索。同时,相比于 Milvus,搜索时延降低了 50%,这使生成结构化的统计报表速度提升 30%;

  • 数据分析成本降低 50%:由于无需将所有的商品评论信息通过大模型进行分析来获取评论标签,仅需要基于评论原文与向量数据库,实时召回评论标签即可生成高质量标签,去除了对大模型的依赖,极大的降低了评论数据分析的成本。

  • 分钟级响应大促等突发流量:对于突发的客户访问量剧增,如大促周期,以往需要客户请求排队半个小时甚至 1 个小时,而 Zilliz Cloud 支持弹性扩缩容,集群增减分钟级即可完成,客户排队的状况也顺利解决。

| 大模型 RAG 应用——VOC 智能问答系统

Shulex 提供 VOC 企业智能问答系统,通过训练企业与外部数据,自动解析成 FAQ,2 分钟生成专业客服机器人,可以显著提升响应效率,同时降低运营成本。

68c332bb7ffbd7e2a4cbe8e44d3640cd.png

图 2 |基于 Zilliz Cloud 的 VOC 智能问答系统

当前,Shulex VOC 智能客服业务采用大模型+向量数据库的标准范式构建了 RAG 应用,除了自动提取公网链接,还将企业文件、邮件、工单等多渠道的知识 embedding 后存入 Zilliz Cloud 来构建企业专属知识库,为大模型增加外接记忆体。而 Zilliz Cloud 使得大模型能够快速有效地检索和处理大量的向量数据,实时召回知识,稳定支撑 Shulex VOC 智能客服业务每秒 90 次的客户询问,稳定召回率在 98% 以上,据统计,Shulex 智能客服机器人已经可以承担 80% 以上的客服工作。

03.

客户说

Shulex CTO  潘胜一表示:“从开源的向量数据库 Milvus 切换到托管云服务 Zilliz Cloud 后,我们的业务收益显著提升,实现了更低的运维成本、更高的业务速度、更灵活的系统架构以及更稳定的用户体验。通过使用 Zilliz Cloud,我们能够享受到专家团队的支持,他们能够高效沟通并快速解决业务中遇到的问题。总的来说,Zilliz Cloud 为我们带来了更大的便利和竞争优势,我们对这一转变感到非常满意和乐观。”

04.

关于 Zilliz

Zilliz 作为向量数据库技术的开创者,推出的全球最受欢迎的的开源向量数据库--Milvus,受到了全球 5000 家以上企业用户的支持与青睐。2023 年,Zilliz推出了基于 Milvus 的全托管云服务 Zilliz Cloud。

截至目前,Zilliz Cloud 已实现全球 4 大云 11 个节点的全覆盖,是全球首个提供海内外多云服务的向量数据库企业,其企业注册用户已超过 40,000 家,付费用户遍及全球多个国家和地区,覆盖 AIGC 领域、电商、在线教育等场景。作为 AIGC 关键基础设施和 RAG 技术的基本组件提供商,Zilliz 完成了与全球头部大模型生态的对接,赋能大模型应用落地。

加入 Zilliz AI 初创计划

250229655b9512f9731b65a8ea785443.png

Zilliz AI 初创计划是面向 AI 初创企业推出的一项扶持计划,预计提供总计 1000 万元的 Zilliz Cloud 抵扣金,致力于帮助 AI 开发者构建高效的非结构化数据管理系统,助力打造高质量 AI 服务与运用,加速产业落地。文末点击[阅读原文]了解更多。

推荐阅读

bdd1c6d6b692ae8792a662d9bd296bef.png

c3df239cd622c27bcf43541e42773a41.png

130d41e24fc26e6da3a9a421eeedbe97.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/459902.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

遥感深度学习:CNN-LSTM模型用于NDVI的预测(Pytorch代码深度剖析)

代码上传至Github库:https://github.com/ChaoQiezi/CNN-LSTM-model-is-used-to-predict-NDVI 01 前言 这是一次完整的关于时空遥感影像预测相关的深度学习项目,后续有时间更新后续部分。 通过这次项目,你可以了解: pytroch的模…

力扣● 1143.最长公共子序列 ● 1035.不相交的线 ● 53. 最大子序和 动态规划

● 1143.最长公共子序列 1.dp数组含义。 dp[i][j]:数组1[0,i-1]范围的子数组和数组2[0,j-1]的子数组的公共子序列最长长度。注意这里不需要一定以A[i-1]/B[j-1]结尾,原因在下面有说明。 动态规划求子序列的问题,一般都是dp的下标相对于数组…

YOLOv7-Openvino和ONNXRuntime推理【CPU】

纯检测系列: YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv7-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 跟踪系列: YOLOv5/6/7-O…

EtherCAT开源主站 IGH 介绍及主站伺服控制过程

目录 前言 IGH EtherCAT主站介绍 主要特点和功能 使用场景 SOEM 主站介绍 SOEM 的特点和功能 SOEM 的使用场景 IGH 主站 和 SOEM对比 1. 功能和复杂性 2. 资源消耗和移植性 3. 使用场景 EtherCAT 通信原理 EtherCAT主站控制伺服过程 位置规划模式 原点复归模式…

渗透测试实战思路分析

免责声明:文章来源真实渗透测试,已获得授权,且关键信息已经打码处理,请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人…

Android图片加载-Glide4,Android多进程从头讲到尾

open fun load(context: WeakReference, url: String?, image: ImageView?, transformation: BitmapTransformation) { if (image null) return // 具体图片加载逻辑 } open fun load(holder: Int, context: WeakReference, url: String, image: ImageView?, width: Int, …

Slim-Neck by GSConv

paper:Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles official implementation:https://github.com/alanli1997/slim-neck-by-gsconv 背景 目标检测是计算机视觉中一个重要的下游任务。对于车载…

UE4_AI_行为树_行为树快速入门指南

声明:学习笔记。 在 行为树快速入门指南 中,你将学会如何创建一个敌方AI,该AI看到玩家后会做出反应并展开追逐。当玩家离开视线后,AI将在几秒钟后(这可根据你的需求进行调整)放弃追逐,并在场景中…

git的实际运用

1. SSH配置和Github仓库克隆 注意博主在这里演示的SSH密钥生成方式,下面追加的五行不成功时可手动到.ssh下的config文件中添加即可 $ tail -5 config Host github.comHostName github.comPreferredAuthentications publickeyIdentityFile ~/.ssh/test 演示 2. 关联…

[AIGC] Spring Boot中的切面编程和实例演示

切面编程(Aspect Oriented Programming,AOP)是Spring框架的关键功能之一。通过AOP,我们可以将代码下沉到多个模块中,有助于解决业务逻辑和非业务逻辑耦合的问题。本文将详细介绍Spring Boot中的切面编程,并…

流程控制 JAVA语言基础

任何简单或复杂的算法都可以由三种基本结构组成:顺序结构,选择结构,循环结构。 顺序结构 比较一般的结构,程序从上到下执行。 选择结构 我们从最简单的单路选择开始,符合条件的进入语句序列,不符合条件的…

基于Java公司配件库存管理系统设计与实现【附项目源码】分享

基于Java公司配件库存管理系统设计与实现: 源码地址:https://download.csdn.net/download/weixin_43894652/88842718 基于Java的公司配件库存管理系统设计与实现需求文档 一、项目背景和目标 随着公司业务的不断拓展,配件库存管理逐渐成为…

旭日x3派部署自己训练的模型(安全帽识别、视频流推理、yolov5-6.2)

旭日x3派部署自己训练的模型(安全帽识别、视频流推理、yolov5-6.2)windows,框架pytorch,python3.7 效果模型训练模型转换1、pt模型文件转onnx2、检查onnx模型3、准备校准数据4、onnx转bin 上板视频流推理1、图片推理2、视频流推理…

ArrayBlockingQueue与LinkedBlockingQueue底层原理

ArrayBlockingQueue与LinkedBlockingQueue底层原理 在线程池中,等待队列采用ArrayBlockingQueue或者LinkedBlockingDeque,那他们是怎么实现存放线程、阻塞、取出的呢? 一、ArrayBlockingQueue底层原理 1.1 简介 ArrayBlockingQueue是一个阻塞…

centos7 install rocketmq 宿主机快速搭建RocketMQ单机开发环境

为什么采用宿主机而不采用 Docker 方式快速搭建 在搭建 RocketMQ 测试环境时,我们可以选择在宿主机上直接安装和配置,也可以使用 Docker 容器来快速搭建。然而,为什么我们选择了在宿主机上安装而不是使用 Docker 方式呢? 调整配置…

电池的性能指标

1 电池基本概念 电池是通过电化学反应将化学能转换为电能的设备。根据是否可反复充电使用,可分为干电池和蓄电池两类。 电池中涉及电化学反应的部分为电极和电解质,电化学反应发生在电极和电解质接触的表面,电解质仅负责协助带电粒子的移动…

腾讯云服务器入站规则端口开放使用指南(CentOS系统)

第一步:开放安全组入站规则 来源处0.0.0.0/0是对IPv4开发,::/0是对IPv6开放; 协议端口按照提示填写即可。云服务器防火墙开放 第三步:本地防火墙开放 sudo firewall-cmd --zonepublic --add-port你的端口号/tcp --perma…

瑞典斯凯孚SKF激光对中仪维修TKSA40/60

SKF对中仪维修型号包括:TKSA40、TKSA20、TKSA31、TKSA41、TKSA51、TKSA71等 斯凯孚SKF激光对中仪维修产品技术参数及注意事项: 该设备有两个无线测量单元、大尺寸测位传感器和更大功率的激光器,即使在严苛的条件下也能实现测量。 显示器单元…

显著性检验P值...

显著性检验&#xff1a;P值和置信度_显著性p<0.05,p<0.01,p<0.001-CSDN博客 看论文里面一般在结果后面都会加上 虽然学过概率统计&#xff0c;但是一直不懂在结果这里加上这个代表什么含义&#xff0c;以及如何计算&#xff0c;参考上面链接进行学习。 P值指的是比较…

蓝桥杯刷题|03入门真题

目录 [蓝桥杯 2020 省 B1] 整除序列 题目描述 输入格式 输出格式 输入输出样例 说明/提示 代码及思路 [蓝桥杯 2020 省 AB3] 日期识别 题目描述 输入格式 输出格式 输入输出样例 说明/提示 代码及思路 [蓝桥杯 2019 省 B] 特别数的和 题目描述 输入格式 输出格…