Siamese Network(孪生神经网络)详解

 Siamese和Chinese有点像。Siam是古时候泰国的称呼,中文译作暹罗。Siamese也就是“暹罗”人或“泰国”人。Siamese在英语中是“孪生”、“连体”的意思,这是为什么呢?十九世纪泰国出生了一对连体婴儿,当时的医学技术无法使两人分离出来,于是两人顽强地生活了一生,1829年被英国商人发现,进入马戏团,在全世界各地表演,1839年他们访问美国北卡罗莱那州后来成为“玲玲马戏团” 的台柱,最后成为美国公民。1843年4月13日跟英国一对姐妹结婚,恩生了10个小孩,昌生了12个,姐妹吵架时,兄弟就要轮流到每个老婆家住三天。1874年恩因肺病去世,另一位不久也去世,两人均于63岁离开人间。两人的肝至今仍保存在费城的马特博物馆内。从此之后“暹罗双胞胎”(Siamesetwins)就成了连体人的代名词,也因为这对双胞胎让全世界都重视到这项特殊疾病。

简单来说,孪生神经网络(Siamese network)就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的。所谓权值共享就是当神经网络有两个输入的时候,这两个输入使用的神经网络的权值是共享的(可以理解为使用了同一个神经网络)。很多时候,我们需要去评判两张图片的相似性,比如比较两张人脸的相似性,我们可以很自然的想到去提取这个图片的特征再进行比较,自然而然的,我们又可以想到利用神经网络进行特征提取。
如果使用两个神经网络分别对图片进行特征提取,提取到的特征很有可能不在一个域中,此时我们可以考虑使用一个神经网络进行特征提取再进行比较。这个时候我们就可以理解孪生神经网络为什么要进行权值共享了。

孪生神经网络有两个输入(Input1 and Input2),利用神经网络将输入映射到新的空间,形成输入在新的空间中的表示。通过Loss的计算,评价两个输入的相似度。

一、背景

在人脸识别中,存在所谓的one-shot问题。举例来说,就是对公司员工进行人脸识别,每个员工只给你一张照片(训练集样本少),并且员工会离职、入职(每次变动都要重新训练模型)。有这样的问题存在,就没办法直接训练模型来解决这样的分类问题了。为了解决one-shot问题,我们会训练一个模型来输出给定两张图像的相似度,所以模型学习得到的是similarity函数。哪些模型能通过学习得到similarity函数呢?Siamese网络就是这样的一种模型。

二、问题类型

主要解决以下两类分类问题:

第一类,分类数量较少,每一类的数据量较多,比如ImageNet、VOC等。这种分类问题可以使用神经网络或者SVM解决,只要事先知道了所有的类。
第二类,分类数量较多(或者说无法确认具体数量),每一类的数据量较少,比如人脸识别、人脸验证任务。

三、解决方法

将输入映射为一个特征向量,使用两个向量之间的“距离”(L1 Norm)来表示输入之间的差异(图像语义上的差距)。据此设计了Siamese Network。每次需要输入两个样本作为一个样本对计算损失函数。
1)用的softmax只需要输入一个样本。
2)FaceNet中的Triplet Loss需要输入三个样本。
提出了Contrastive Loss用于训练。

四、网络介绍

1、主干网络

孪生神经网络的主干特征提取网络的功能是进行特征提取,各种神经网络都可以适用,eg:VGG16 ,下图能反映VGG16结构特征:


1、一张原始图片被resize到指定大小,本文使用105x105。
2、conv1包括两次[3,3]卷积网络,一次2X2最大池化,输出的特征层为64通道。
3、conv2包括两次[3,3]卷积网络,一次2X2最大池化,输出的特征层为128通道。
4、conv3包括三次[3,3]卷积网络,一次2X2最大池化,输出的特征层为256通道。
5、conv4包括三次[3,3]卷积网络,一次2X2最大池化,输出的特征层为512通道。
6、conv5包括三次[3,3]卷积网络,一次2X2最大池化,输出的特征层为512通道。
实现代码:

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD

class VGG16:
    def __init__(self):
        self.block1_conv1 = Conv2D(64,(3,3),activation = 'relu',padding = 'same',name = 'block1_conv1')
        self.block1_conv2 = Conv2D(64,(3,3),activation = 'relu',padding = 'same', name = 'block1_conv2')
        self.block1_pool = MaxPooling2D((2,2), strides = (2,2), name = 'block1_pool')
        
        self.block2_conv1 = Conv2D(128,(3,3),activation = 'relu',padding = 'same',name = 'block2_conv1')
        self.block2_conv2 = Conv2D(128,(3,3),activation = 'relu',padding = 'same',name = 'block2_conv2')
        self.block2_pool = MaxPooling2D((2,2),strides = (2,2),name = 'block2_pool')

        self.block3_conv1 = Conv2D(256,(3,3),activation = 'relu',padding = 'same',name = 'block3_conv1')
        self.block3_conv2 = Conv2D(256,(3,3),activation = 'relu',padding = 'same',name = 'block3_conv2')
        self.block3_conv3 = Conv2D(256,(3,3),activation = 'relu',padding = 'same',name = 'block3_conv3')
        self.block3_pool = MaxPooling2D((2,2),strides = (2,2),name = 'block3_pool')

        self.block4_conv1 = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block4_conv1')
        self.block4_conv2 = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block4_conv2')
        self.block4_conv3 = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block4_conv3')
        self.block4_pool = MaxPooling2D((2,2),strides = (2,2),name = 'block4_pool')

        # 第五个卷积部分
        self.block5_conv1 = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block5_conv1')
        self.block5_conv2 = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block5_conv2')
        self.block5_conv3 = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block5_conv3')   
        self.block5_pool = MaxPooling2D((2,2),strides = (2,2),name = 'block5_pool')

        self.flatten = Flatten(name = 'flatten')

    def call(self, inputs):
        x = inputs
        x = self.block1_conv1(x)
        x = self.block1_conv2(x)
        x = self.block1_pool(x)

        x = self.block2_conv1(x)
        x = self.block2_conv2(x)
        x = self.block2_pool(x)

        x = self.block3_conv1(x)
        x = self.block3_conv2(x)
        x = self.block3_conv3(x)
        x = self.block3_pool(x)
        
        x = self.block4_conv1(x)
        x = self.block4_conv2(x)
        x = self.block4_conv3(x)
        x = self.block4_pool(x)

        x = self.block5_conv1(x)
        x = self.block5_conv2(x)
        x = self.block5_conv3(x)
        x = self.block5_pool(x)

        outputs = self.flatten(x)
        return outputs
2、比较网络

在获得主干特征提取网络之后,我们可以获取到一个多维特征,我们可以使用flatten的方式将其平铺到一维上,这个时候我们就可以获得两个输入的一维向量了,再将这两个一维向量进行相减,再进行绝对值求和,相当于求取了两个特征向量插值的L1范数。也就相当于求取了两个一维向量的距离。对这个距离再进行两次全连接,第二次全连接到一个神经元上,对这个神经元的结果取sigmoid,使其值在0-1之间,代表两个输入图片的相似程度。

实现代码如下:

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Lambda
from keras.models import Model
import keras.backend as K
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from nets.vgg import VGG16

 
def siamese(input_shape):
    vgg_model = VGG16()

    input_image_1 = Input(shape=input_shape)
    input_image_2 = Input(shape=input_shape)

    encoded_image_1 = vgg_model.call(input_image_1)
    encoded_image_2 = vgg_model.call(input_image_2)

    l1_distance_layer = Lambda(
        lambda tensors: K.abs(tensors[0] - tensors[1]))
    l1_distance = l1_distance_layer([encoded_image_1, encoded_image_2])

    out = Dense(512,activation='relu')(l1_distance)
    out = Dense(1,activation='sigmoid')(out)

    model = Model([input_image_1,input_image_2],out)
    return model

五、网络结构

六、Contrastive Loss损失函数

在孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。contrastive loss的表达式如下:

其中

代表两个样本特征X_{1}X_{2}的欧氏距离(二范数)P 表示样本的特征维数,Y 为两个样本是否匹配的标签,Y=1 代表两个样本相似或者匹配,Y=0 则代表不匹配,m 为设定的阈值,N 为样本个数。

观察上述的contrastive loss的表达式可以发现,这种损失函数可以很好的表达成对样本的匹配程度,也能够很好用于训练提取特征的模型。

①当 Y=1(即样本相似时),损失函数只剩下

即当样本不相似时,其特征空间的欧式距离反而小的话,损失值会变大,这也正好符号我们的要求。
②当 Y=0 (即样本不相似时),损失函数为

即当样本不相似时,其特征空间的欧式距离反而小的话,损失值会变大,这也正好符号我们的要求。
注意这里设置了一个阈值margin,表示我们只考虑不相似特征欧式距离在0~margin之间的,当距离超过margin的,则把其loss看做为0(即不相似的特征离的很远,其loss应该是很低的;而对于相似的特征反而离的很远,我们就需要增加其loss,从而不断更新成对样本的匹配程度)]

七、延伸

triplet loss 是深度学习的一种损失函数,主要是用于训练差异性小的样本,比如人脸等;其次在训练目标是得到样本的embedding任务中,triplet loss 也经常使用,比如文本、图片的embedding。

Siamese network是双胞胎连体,三胞胎连体叫Triplet network,论文是《Deep metric learning using Triplet network》,输入是三个,一个正例+两个负例,或者一个负例+两个正例,训练的目标是让相同类别间的距离尽可能的小,让不同类别间的距离尽可能的大。如果能把四胞胎整出来就好了。下图为三胞胎的图解:

参考文章链接:
孪生神经网络(Siamese Network)详解-CSDN博客
详解Siamese网络-CSDN博客
Siamese network 孪生神经网络--一个简单神奇的结构 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/456999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python二级备考

考试大纲如下: 基本要求 考试内容 考试方式 比较希望能直接刷题,因为不懂的比较多可能会看视频。 基础操作刷题: 知乎大头计算机1-13题 import jieba txtinput() lsjieba.lcut(txt) print("{:.1f}".format(len(txt)/len(ls)…

代码随想录训练营Day23:● 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树 ● 总结篇

669. 修剪二叉搜索树 题目链接 https://leetcode.cn/problems/trim-a-binary-search-tree/description/ 题目描述 思路 public TreeNode trimBST(TreeNode root, int low, int high) {if(rootnull) return null;//当前节点的值比区间的最小值小,说明需要删除&am…

goctl-swagger 生成json接口文件

参考: GitHub - dyntrait/goctl-swagger: 通过 api 文件生成 swagger 文档 GitHub - Bluettipower/goctl-swagger 一:编译 执行go install 前一般需要设置环境,不然资源经常会下载不下载 go env -w GOPROXYhttps://goproxy.cn,direct 执行完 go in…

Linux操作系统——常见指令(1)

今天分享一下Linux操作系统常见一些指令。今天介绍 ls pwd cd touch mkdir rmdir rm这几个指令。 ls指令 语法 ls 选项 目录或者文件 功能 对于目录,该命令列出该目录下的所有子目录和文件,对于文件,将列出文件名以及其他信息。 我们常用…

JavaScript基础(超详细)

目录 1.JavaScript概述 2.JavaScript的组成及其基本结构 1.JavaScript的组成 1.ECMAScript ECMAScript是一种由Ecma国际[前向为欧洲计算机制造商协会(European Computer Manufacturers Associaiton)]通过ECMA-262标准化的脚本程序设计语言。其主要描述了JavaScript的语法…

视频素材哪里去找?分享五个高清素材网站

从事短视频以来,关于视频素材哪里去找?好多人都是无从下手,今天我把使用多年的视频素材网站,分享给大家。 无论你短视频你想在抖音还是自媒体或者小红书还是搞笑摄影还是视频素材剪辑,你想要的通通都有! 蛙…

交换机/路由器的存储介质-华为

交换机/路由器的存储介质-华为 本文主要介绍网络设备的存储介质组成。 SDRAM(同步动态随机存取内存) 系统运行内存,相当于电脑的内存; NVRAM(Non-Volatile Random Access Memory,非易失性随机访问存储器…

L1-5 猜帽子游戏

宝宝们在一起玩一个猜帽子游戏。每人头上被扣了一顶帽子,有的是黑色的,有的是黄色的。每个人可以看到别人头上的帽子,但是看不到自己的。游戏开始后,每个人可以猜自己头上的帽子是什么颜色,或者可以弃权不猜。如果没有…

网络编程:网络编程基础

一、网络发展 1.TCP/IP两个协议阶段 TCP/IP协议已分成了两个不同的协议: 用来检测网络传输中差错的传输控制协议TCP 专门负责对不同网络进行2互联的互联网协议IP 2.网络体系结构 OSI体系口诀:物链网输会示用 2.1网络体系结构概念 每一层都有自己独…

基于HarmonyOS ArkTS中秋国庆祝福程序、以代码之名,写阖家团圆祝福

中秋、国庆双节将至,作为程序员,以代码之名,表达对于阖家团圆的祝福。本节将演示如何在基于HarmonyOS ArkUI的SwiperController、Image、Swiper等组件来实现节日祝福轮播程序。 规则要求具体要求如下: 1、根据主题,用…

XIAO ESP32S3部署Edge Impulse模型

在上一篇文章中我们介绍了如何使用edge impulse训练一个图片分类模型并导出arduino库文件。在这篇文章中我们将介绍如何在esp32s3中部署这个训练好的图片分类模型。 添加进Arduino库 有两种方法将下载的文件添加进Arduino库。 在Arduino IDE程序中,转到项目选项卡…

Kotlin:为什么创建类不能被继承

一、为什么创建类不能被继承 class或data class 默认情况下,Kotlin 类是最终(final)的:它们不能被继承。 示例:data class PsersonBean 反编译data class PsersonBean 生成 public final class PsersonBean 示例&…

软件设计师17--磁盘管理

软件设计师17--磁盘管理 考点1:存储管理 - 磁盘管理调度算法磁盘调度 - FCFS磁盘调度 - SSTF例题: 考点1:存储管理 - 磁盘管理 存取时间寻道时间等待时间,训导时间是指磁头移动到磁道所需的时间;等待时间为等待读写的扇…

【Memcached】

memcached 有一个很大的缺陷不能持久化,不能存储在硬盘里 1.NoSQL介绍 NoSQL是对 Not Only SQL、非传统关系型数据库的统称。 NoSQL一词诞生于1998年,2009年这个词汇被再次提出指非关系型、分布式、不提供ACID的数据库设计模式。 随着互联网时代的到…

脚手架cli快速创建Vue2/Vue3项目

前言: 本文的nodejs版本是14.21.3 第一步 进入cmd窗口 1、全局安装webpack npm install webpack-g, npm install webpack-g 第二步 2、全局安装vue脚手架 npm install -g vue/cli 第三步 3、初始化vue项目 (vue脚手架使用webpack模…

【DL经典回顾】激活函数大汇总(五)(Hard Sigmoid Hard Tanh附代码和详细公式)

激活函数大汇总(五)(Hard Sigmoid & Hard Tanh附代码和详细公式) 更多激活函数见激活函数大汇总列表 一、引言 欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数…

ISIS多区域实验简述

为支持大型路由网络,IS-IS在路由域内采用两级分层结构。 IS-IS网络中三种级别的路由设备:将Level-1路由设备部署在区域内,Level-2路由设备部署在区域间,Level-1-2路由设备部署在Level-1和Level-2路由设备的中间。 实验拓扑图&…

【MMDetection3D实战4】利用mmdet3d进行训练

文章目录 1. 介绍1.1 训练流程1.2 测试及验证2. 训练过程演示2.1 准备数据集并处理2.2 加载并修改配置文件2.3 启动训练2.4 测试1. 介绍 1.1 训练流程 MMDetection3D(mmdet3d)和OpenMMlab其他代码库是一样的,在训练的时候需要准备好一个配置文件,在配置文件中定义好所使用的…

力扣经典题:化栈为队

整体思路:入栈然后出栈,操作就和队列相同了 大佬的代码 typedef struct Node {int val;struct Node* next; }Node; Node* newNode(int Val) {Node* n(Node*)malloc(sizeof(Node));n->valVal;n->nextNULL;return n; } void push(Node* Head,int Va…

电脑远程桌面选项变成灰色没办法勾选怎么办?

有些人在使用Windows系统自带的远程桌面工具时,会发现系统属性远程桌面选项卡中勾选启用“允许远程连接到此计算机”。 导致此问题出现的原因主要是由于组策略或者注册表设置错误造成的。 修复远程桌面选项变灰的两种方法! 方法一:设置本地组…