Pytorch个人学习记录总结 08

目录

神经网络-搭建小实战和Sequential的使用

版本1——未用Sequential 

版本2——用Sequential


神经网络-搭建小实战和Sequential的使用

  1. torch.nn.Sequential的官方文档地址,模块将按照它们在构造函数中传递的顺序添加。
  2. 代码实现的是下图: 

版本1——未用Sequential 

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        # 3,32,32 ---> 32,32,32
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,32,32 ---> 32,16,16
        self.maxpool1 = MaxPool2d(kernel_size=2, stride=2)
        # 32,16,16 ---> 32,16,16
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        # 32,16,16 ---> 32,8,8
        self.maxpool2 = MaxPool2d(kernel_size=2, stride=2)
        # 32,8,8 ---> 64,8,8
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # 64,8,8 ---> 64,4,4
        self.maxpool3 = MaxPool2d(kernel_size=2, stride=2)
        # 64,4,4 ---> 1024
        self.flatten = Flatten()  # 因为start_dim默认为1,所以可不再另外设置
        # 1024 ---> 64
        self.linear1 = Linear(1024, 64)
        # 64 ---> 10
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

版本2——用Sequential

代码更简洁,而且会给每层自动从0开始编序。

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        return self.model(x)


model = Model()
print(model)

input = torch.ones((64, 3, 32, 32))
out = model(input)
print(out.shape)	# torch.Size([64, 10])

 在代码最末尾加上writer.add_gragh(model, input)就可看到模型计算图,可放大查看。

writer = SummaryWriter('./logs/Seq')
writer.add_graph(model, input)
writer.close()

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/45386.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue入门项目——WebApi

Vue入门——WebApi vue3项目搭建组合式API响应式APIreactive()ref() 生命周期钩子computed计算属性函数watch监听函数父子通信模板引用组合选项 vue3项目搭建 简单看下Vue3的优势吧 下载安装npm及node.js16.0以上版本(确保安装成功可用如下代码检查版本&#xff0…

【Docker-compose】基于Docker-compose创建LNMP环境并运行Wordpress网站平台

基于Docker compose创建LNMP环境并运行Wordpress网站平台 1.Docker-Compose概述2. YAML文件格式及编写注意事项3. Docker-Compose配置常用字段4.Docker Compose常用命令5.使用Docker-compose创建LNMP环境,并运行Wordpress网站平台5.1 Docker Compose环境安装5.2 使用…

使用spark进行hbase的bulkload

使用spark进行hbase的bulkload 一、 背景 HBase 是一个面向列,schemaless,高吞吐,高可靠可水平扩展的 NoSQL 数据库,用户可以通过 HBase client 提供的 put get 等 api 实现在数据的实时读写。在过去的几年里,HBase …

主机漏洞利用演示MS17-010(永恒之蓝)

ms17-010危害:对被攻击方的电脑造成蓝屏! 申明:本篇文章的用意仅做学习使用 网络搭建环境: 软件:Vmware Workstation 17 攻击机:Kali 靶机环境:Windows 7 Nmap软件的基本功能: …

ONNX Runtime 加速深度学习(C++ 、python)详细介绍

ONNX Runtime 加速深度学习(C 、python)详细介绍 本文在 https://blog.csdn.net/u013250861/article/details/127829944 基础上进行了更改,感谢原作! ONNXRuntime(Open Neural Network Exchange)是微软推出的一款针对ONNX模型格式的推理框架&#xff0c…

3DVR全景旅游,最新数字化智慧文旅

导语: 随着科技的飞速发展,3DVR全景旅游正以其独特的特点和无限的优势,成为当今智慧文旅的领航者。穿戴上VR设备,只需一个轻轻的点击,你将被带入一个全新的数字世界,领略美景、探索奇迹。让我们一起深入了…

第119天:免杀对抗-二开CSShellcode函数修改生成模版修改反编译重打包(下)

知识点 #知识点: 1、CS-表面特征消除 2、CS-HTTP流量特征消除 3、CS-Shellcode特征消除#章节点: 编译代码面-ShellCode-混淆 编译代码面-编辑执行器-编写 编译代码面-分离加载器-编写 程序文件面-特征码定位-修改 程序文件面-加壳花指令-资源 代码加载面…

SSM企业固定资产智能管理系统的设计与实现【纯干货分享,M免费领取源码06298】

摘要 信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对企业固定资产智能管理系统等问题&#xff0c…

springboot 项目启动不打印spring 启动日志

今天项目遇到一个很奇怪的问题,服务在启动时,不打印spring 的启动日志。经过排查发现是因为其他的依赖引入了 log4j 的依赖,因为我们的项目用的是logback,所以项目中没有log4j 的相关配置,所以干扰到了日志的打印 原因…

删除主表 子表外键没有索引的性能优化

整个表147M,执行时一个CPU耗尽, buffer gets 超过1个G, 启用并行也没有用 今天开发的同事问有个表上的数据为什么删不掉?我看了一下,也就不到100000条数据,表上有外键,等了5分钟hang在那里&…

python:基于GeoPandas和GeoViews库将GEDI激光高程数据映射到交互式地图

作者:CSDN @ _养乐多_ 本文将介绍 GEDI(Global Ecosystem Dynamics Investigation)激光雷达数据某数据点波形数据提取,并绘制图表,添加其他图表元素并使图表具有交互性。 在本文中,我们将探索如何打开、读取和处理GEDI数据,并利用地理信息处理库GeoPandas和地理空间数…

DevOps自动化平台开发之 Shell脚本执行的封装

基础知识 基于如下技术栈开发DevOps平台 Spring Boot Shell Ansible Git Gitlab Docker K8S Vue 1、spring boot starter的封装使用 2、Shell脚本的编写 3、Ansible 脚本的编写 4、Docker 的使用与封装设计 本篇介绍如何使用Java封装Linux命令和Shell脚本的使用 将其设计成…

云计算——ACA学习 数据中心概述

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 目录 写在前面 课程目标 学前了解 一.数据中心定义 二.数据中心涉及的主要标准与规范 …

和chatgpt学架构04-路由开发

目录 1 什么是路由2 如何设置路由2.1 安装依赖2.2 创建路由文件2.3 创建首页2.4 编写HomePage2.5 更新路由配置2.6 让路由生效 3 测试总结 要想使用vue实现页面的灵活跳转,其中路由配置是必不可少的,我们在做开发的时候,先需要了解知识点&…

十、数据结构——链式队列

数据结构中的链式队列 目录 一、链式队列的定义 二、链式队列的实现 三、链式队列的基本操作 ①初始化 ②判空 ③入队 ④出队 ⑤获取长度 ⑥打印 四、循环队列的应用 五、总结 六、全部代码 七、结果 在数据结构中,队列(Queue)是一种常见…

【数据分享】1999—2021年地级市地方一般公共预算收支状况(科学技术支出/教育支出等)

在之前的文章中,我们分享过基于2000-2022年《中国城市统计年鉴》整理的1999-2021年地级市的人口相关数据、各类用地面积数据、污染物排放和环境治理相关数据、房地产投资情况和商品房销售面积、社会消费品零售总额和年末金融机构存贷款余额(可查看之前的…

STM32CubeIDE(串口)

目录 一、轮询模式 1.1 配置USART2为异步模式 1.2 500ms发送一次消息 1.3 通信结果 1.4 串口控制LED 二、中断收发 2.1 开启中断 2.2 中断发送接收 2.2.1 中断发送只需要调用接口 2.2.2 中断接收 2.3 实验结果 三、DMA模式与收发不定长数据 3.1 DMA通道配置 3.2 DMA…

【MATLAB绘图】

MATLAB绘图函数:Plot函数详解 介绍 MATLAB是一种常用的科学计算和数据可视化工具,它提供了强大的绘图函数,使用户能够创建各种类型的图表和图形。 基本语法 plot函数的基本语法如下: plot(x, y)其中,x和y是长度相…

Vue 本地应用 图片切换 v-show v-bind实践

点击切换图片的本质,其实修改的是img标签的src属性。 图片的地址有很多个,在js当中通过数组来保存多个数据,数组的取值结合索引,根据索引可以来判断是否是第一张还是最后一张。 图片的变化本质是src属性被修改了,属性…

Shell输出帮助手册

代码: 帮助手册雏形 function help(){echo -e "Help manual":echo -e " -h. -- help View the help manual"echo -e " install Installation"echo -e " uninstall Uninstall" }case "$1&qu…