ONNX Runtime 加速深度学习(C++ 、python)详细介绍

ONNX Runtime 加速深度学习(C++ 、python)详细介绍

  • 本文在 https://blog.csdn.net/u013250861/article/details/127829944 基础上进行了更改,感谢原作!

  • ONNXRuntime(Open Neural Network Exchange)是微软推出的一款针对ONNX模型格式的推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持,只要掌握模型导出的相应操作,便能对将不同框架的模型进行部署,提高开发效率。

  • 官网:https://onnxruntime.ai/

  • python-ORT 教程:https://onnxruntime.ai/docs/api/python/index.html

  • C++ - ORT教程:https://onnxruntime.ai/docs/api/c/

  • github 下载:https://github.com/microsoft/onnxruntime/releases
    在这里插入图片描述

  • 下载完成后解压文件如下:C++部署时可以类似opencv配置

在这里插入图片描述

二、Pytorch导出.onnx模型

  • 首先,利用pytorch自带的torch.onnx模块导出 .onnx 模型文件,具体查看该部分pytorch官方文档,主要流程如下:
import torch
checkpoint = torch.load(model_path)
model = ModelNet(params)
model.load_state_dict(checkpoint['model'])
model.eval()
 
input_x_1 = torch.randn(10,20)
input_x_2 = torch.randn(1,20,5)
output, mask = model(input_x_1, input_x_2)
 
torch.onnx.export(model,
                 (input_x_1, input_x_2),
                 'model.onnx',
                 input_names = ['input','input_mask'],
                 output_names = ['output','output_mask'],
                 opset_version=11,
                 verbose = True,
                 dynamic_axes={'input':{1,'seqlen'}, 'input_mask':{1:'seqlen',2:'time'},'output_mask':{0:'time'}})
  • torch.onnx.export参数在文档里面都有,opset_version对应的版本很重要,dynamic_axes是对输入和输出对应维度可以进行动态设置,不设置的话输入和输出的Tensor 的 shape是不能改变的,如果输入固定就不需要加。

  • 导出的模型可否顺利使用可以先使用python进行检测

import onnxruntime as ort
import numpy as np
ort_session = ort.InferenceSession('model.onnx')
outputs = ort_session.run(None,{'input':np.random.randn(10,20),'input_mask':np.random.randn(1,20,5)})
# 由于设置了dynamic_axes,支持对应维度的变化
outputs = ort_session.run(None,{'input':np.random.randn(10,5),'input_mask':np.random.randn(1,26,2)})
# outputs 为 包含'output'和'output_mask'的list
 
import onnx
model = onnx.load('model.onnx')
onnx.checker.check_model(model)
  • 如果没有异常代表导出的模型没有问题,目前torch.onnx.export只能对部分支持的Tensor操作进行识别,详情参考Supported operators,对于包括transformer等基本的模型都是没有问题的,如果出现ATen等问题,你就需要对模型不支持的Tensor操作进行改进,以免影响C++对该模型的使用。

三、模型推理流程

总体来看,整个ONNXRuntime的运行可以分为三个阶段:

  • Session构造;
  • 模型加载与初始化;
  • 运行;

在这里插入图片描述

1、第1阶段:Session构造

构造阶段即创建一个InferenceSession对象。在python前端构建Session对象时,python端会通过http://onnxruntime_pybind_state.cc调用C++中的InferenceSession类构造函数,得到一个InferenceSession对象。

InferenceSession构造阶段会进行各个成员的初始化,成员包括负责OpKernel管理的KernelRegistryManager对象,持有Session配置信息的SessionOptions对象,负责图分割的GraphTransformerManager,负责log管理的LoggingManager等。当然,这个时候InferenceSession就是一个空壳子,只完成了对成员对象的初始构建。

2、第2阶段:模型加载与初始化

在完成InferenceSession对象的构造后,会将onnx模型加载到InferenceSession中并进行进一步的初始化。

2.1. 模型加载

模型加载时,会在C++后端会调用对应的Load()函数,InferenceSession一共提供了8种Load函数。包读从url,ModelProto,void* model data,model istream等读取ModelProto。InferenceSession会对ModelProto进行解析然后持有其对应的Model成员。

2.2. Providers注册

在Load函数结束后,InferenceSession会调用两个函数:RegisterExecutionProviders()和sess->Initialize();

RegisterExecutionProviders函数会完成ExecutionProvider的注册工作。这里解释一下ExecutionProvider,ONNXRuntime用Provider表示不同的运行设备比如CUDAProvider等。目前ONNXRuntimev1.0支持了包括CPU,CUDA,TensorRT,MKL等七种Providers。通过调用sess->RegisterExecutionProvider()函数,InferenceSession通过一个list持有当前运行环境中支持的ExecutionProviders。

2.3. InferenceSession初始化

即sess->Initialize(),这时InferenceSession会根据自身持有的model和execution providers进行进一步的初始化(在第一阶段Session构造时仅仅持有了空壳子成员变量)。该步骤是InferenceSession初始化的核心,一系列核心操作如内存分配,model partition,kernel注册等都会在这个阶段完成。

  1. 首先,session会根据level注册 graph optimization transformers,并通过GraphTransformerManager成员进行持有。
  2. 接下来session会进行OpKernel注册,OpKernel即定义的各个node对应在不同运行设备上的计算逻辑。这个过程会将持有的各个ExecutionProvider上定义的所有node对应的Kernel注册到session中,session通过KernelRegistryManager成员进行持有和管理。
  3. 然后session会对Graph进行图变换,包括插入copy节点,cast节点等。
  4. 接下来是model partition,也就是根运行设备对graph进行切分,决定每个node运行在哪个provider上。
  5. 最后,为每个node创建ExecutePlan,运行计划主要包含了各个op的执行顺序,内存申请管理,内存复用管理等操作。

3、第3阶段:模型运行

模型运行即InferenceSession每次读入一个batch的数据并进行计算得到模型的最终输出。然而其实绝大多数的工作早已经在InferenceSession初始化阶段完成。细看下源码就会发现run阶段主要是顺序调用各个node的对应OpKernel进行计算。

四、代码

和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

下面就是C++通过onnxruntime对.onnx模型的使用,参考官方样例和常见问题写的模型多输入多输出的情况,部分参数可以参考样例或者查官方API文档。

1、案例01

  • BasicOrtHandler.h:
#include "onnxruntime_cxx_api.h"
#include "opencv2/opencv.hpp"
#include <vector>
#define CHW 0
class BasicOrtHandler {
public:
    Ort::Value BasicOrtHandler::create_tensor(const cv::Mat &mat, const std::vector<int64_t> &tensor_dims, const Ort::MemoryInfo &memory_info_handler, std::vector<float> &tensor_value_handler, unsigned int data_format);
protected:
    Ort::Env ort_env;
    Ort::Session *ort_session = nullptr;
    const char *input_name = nullptr;
    std::vector<const char *> input_node_names;
    std::vector<int64_t> input_node_dims; // 1 input only.
    std::size_t input_tensor_size = 1;
    std::vector<float> input_values_handler;
    // create input tensor
    Ort::MemoryInfo memory_info_handler = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    std::vector<const char *> output_node_names;
    std::vector<std::vector<int64_t>> output_node_dims; // >=1 outputs
    const char*onnx_path = nullptr;
    const char *log_id = nullptr;
    int num_outputs = 1;
protected:
    const unsigned int num_threads; // initialize at runtime.
protected:
    explicit BasicOrtHandler(const std::string &_onnx_path, unsigned int _num_threads = 1);
    virtual ~BasicOrtHandler();
protected:
    BasicOrtHandler(const BasicOrtHandler &) = delete;
    BasicOrtHandler(BasicOrtHandler &&) = delete;
    BasicOrtHandler &operator=(const BasicOrtHandler &) = delete;
    BasicOrtHandler &operator=(BasicOrtHandler &&) = delete;
protected:
    virtual Ort::Value transform(const cv::Mat &mat) = 0;
private:
    void initialize_handler();
};
  • BasicOrtHandler.cpp:
BasicOrtHandler::BasicOrtHandler(const std::string &_onnx_path, unsigned int _num_threads) : log_id(_onnx_path.data()), num_threads(_num_threads) {
// string to wstring
#ifdef LITE_WIN32
    std::wstring _w_onnx_path(lite::utils::to_wstring(_onnx_path));
  onnx_path = _w_onnx_path.data();
#else
    onnx_path = _onnx_path.data();
#endif
    initialize_handler();
}
 
void BasicOrtHandler::initialize_handler() {
    // set ort env
    ort_env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, log_id);
    // 0. session options
    Ort::SessionOptions session_options;
    // set op threads
    session_options.SetIntraOpNumThreads(num_threads);
    // set Optimization options:
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
    // set log level
    session_options.SetLogSeverityLevel(4);
 
    // GPU compatiable.
    // OrtCUDAProviderOptions provider_options;
    // session_options.AppendExecutionProvider_CUDA(provider_options);
    // #ifdef USE_CUDA
    //  OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0); // C API stable.
    // #endif
 
    // 1. session
    ort_session = new Ort::Session(ort_env, onnx_path, session_options);
    // memory allocation and options
    Ort::AllocatorWithDefaultOptions allocator;
    // 2. input name & input dims
    input_name = ort_session->GetInputName(0, allocator);
    input_node_names.resize(1);
    input_node_names[0] = input_name;
    // 3. input names & output dimms
    Ort::TypeInfo type_info = ort_session->GetInputTypeInfo(0);
    auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
    input_tensor_size = 1;
    input_node_dims = tensor_info.GetShape();
 
    for (unsigned int i = 0; i < input_node_dims.size(); ++i) {
        input_tensor_size *= input_node_dims.at(i);
    }
    input_values_handler.resize(input_tensor_size);
    // 4. output names & output dimms
    num_outputs = ort_session->GetOutputCount();
    output_node_names.resize(num_outputs);
    for (unsigned int i = 0; i < num_outputs; ++i) {
        output_node_names[i] = ort_session->GetOutputName(i, allocator);
        Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
        auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
        auto output_dims = output_tensor_info.GetShape();
        output_node_dims.push_back(output_dims);
    }
}
 
Ort::Value BasicOrtHandler::create_tensor(const cv::Mat &mat, const std::vector<int64_t> &tensor_dims, const Ort::MemoryInfo &memory_info_handler, std::vector<float> &tensor_value_handler, unsigned int data_format) throw(std::runtime_error) {
    const unsigned int rows = mat.rows;
    const unsigned int cols = mat.cols;
    const unsigned int channels = mat.channels();
 
    cv::Mat mat_ref;
    if (mat.type() != CV_32FC(channels)){
        mat.convertTo(mat_ref, CV_32FC(channels));
    } else{
        mat_ref = mat;  // reference only. zero-time cost. support 1/2/3/... channels
    }
    if (tensor_dims.size() != 4) {
        throw std::runtime_error("dims mismatch.");
    }
    if (tensor_dims.at(0) != 1) {
        throw std::runtime_error("batch != 1");
    }
    // CXHXW
    if (data_format == CHW) {
        const unsigned int target_channel = tensor_dims.at(1);
        const unsigned int target_height = tensor_dims.at(2);
        const unsigned int target_width = tensor_dims.at(3);
        const unsigned int target_tensor_size = target_channel * target_height * target_width;
        if (target_channel != channels) {
            throw std::runtime_error("channel mismatch.");
        }
        tensor_value_handler.resize(target_tensor_size);
        cv::Mat resize_mat_ref;
        if (target_height != rows || target_width != cols) {
            cv::resize(mat_ref, resize_mat_ref, cv::Size(target_width, target_height));
        } else{
            resize_mat_ref = mat_ref; // reference only. zero-time cost.
        }
        std::vector<cv::Mat> mat_channels;
        cv::split(resize_mat_ref, mat_channels);
        // CXHXW
        for (unsigned int i = 0; i < channels; ++i){
            std::memcpy(tensor_value_handler.data() + i * (target_height * target_width), mat_channels.at(i).data,target_height * target_width * sizeof(float));
        }
        return Ort::Value::CreateTensor<float>(memory_info_handler, tensor_value_handler.data(), target_tensor_size, tensor_dims.data(), tensor_dims.size());
    }
    // HXWXC
    const unsigned int target_channel = tensor_dims.at(3);
    const unsigned int target_height = tensor_dims.at(1);
    const unsigned int target_width = tensor_dims.at(2);
    const unsigned int target_tensor_size = target_channel * target_height * target_width;
    if (target_channel != channels) {
        throw std::runtime_error("channel mismatch!");
    }
    tensor_value_handler.resize(target_tensor_size);
    cv::Mat resize_mat_ref;
    if (target_height != rows || target_width != cols) {
        cv::resize(mat_ref, resize_mat_ref, cv::Size(target_width, target_height));
    } else {
        resize_mat_ref = mat_ref; // reference only. zero-time cost.
    }
    std::memcpy(tensor_value_handler.data(), resize_mat_ref.data, target_tensor_size * sizeof(float));
    return Ort::Value::CreateTensor<float>(memory_info_handler, tensor_value_handler.data(), target_tensor_size, tensor_dims.data(), tensor_dims.size());
}
  • main.cpp:
const std::string _onnx_path="";
unsigned int _num_threads = 1;
 
//init inference
BasicOrtHandler basicOrtHandler(_onnx_path,_num_threads);
 
// after transform image
const cv::Mat mat = "";
const std::vector<int64_t> &tensor_dims = basicOrtHandler.input_node_dims;
const Ort::MemoryInfo &memory_info_handler = basicOrtHandler.memory_info_handler;
std::vector<float> &tensor_value_handler = basicOrtHandler.input_values_handler;
unsigned int data_format = CHW; // 预处理后的模式
 
// 1. make input tensor
Ort::Value input_tensor = basicOrtHandler.create_tensor(mat_rs);
 
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs);
 
// 3. get output tensor
Ort::Value &pred = output_tensors.at(0); // (1,n,c)
 
//postprocess
...

2、案例02
 

#include <assert.h>
#include <vector>
#include <onnxruntime_cxx_api.h>
 
int main(int argc, char* argv[]) {
  Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
  Ort::SessionOptions session_options;
  session_options.SetIntraOpNumThreads(1);
  
  session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
 
#ifdef _WIN32
  const wchar_t* model_path = L"model.onnx";
#else
  const char* model_path = "model.onnx";
#endif
 
  Ort::Session session(env, model_path, session_options);
  // print model input layer (node names, types, shape etc.)
  Ort::AllocatorWithDefaultOptions allocator;
 
  // print number of model input nodes
  size_t num_input_nodes = session.GetInputCount();
  std::vector<const char*> input_node_names = {"input","input_mask"};
  std::vector<const char*> output_node_names = {"output","output_mask"};
    
  std::vector<int64_t> input_node_dims = {10, 20};
  size_t input_tensor_size = 10 * 20; 
  std::vector<float> input_tensor_values(input_tensor_size);
  for (unsigned int i = 0; i < input_tensor_size; i++)
    input_tensor_values[i] = (float)i / (input_tensor_size + 1);
  // create input tensor object from data values
  auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
  Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), 2);
  assert(input_tensor.IsTensor());
 
  std::vector<int64_t> input_mask_node_dims = {1, 20, 4};
  size_t input_mask_tensor_size = 1 * 20 * 4; 
  std::vector<float> input_mask_tensor_values(input_mask_tensor_size);
  for (unsigned int i = 0; i < input_mask_tensor_size; i++)
    input_mask_tensor_values[i] = (float)i / (input_mask_tensor_size + 1);
  // create input tensor object from data values
  auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
  Ort::Value input_mask_tensor = Ort::Value::CreateTensor<float>(mask_memory_info, input_mask_tensor_values.data(), input_mask_tensor_size, input_mask_node_dims.data(), 3);
  assert(input_mask_tensor.IsTensor());
    
  std::vector<Ort::Value> ort_inputs;
  ort_inputs.push_back(std::move(input_tensor));
  ort_inputs.push_back(std::move(input_mask_tensor));
  // score model & input tensor, get back output tensor
  auto output_tensors = session.Run(Ort::RunOptions{nullptr}, input_node_names.data(), ort_inputs.data(), ort_inputs.size(), output_node_names.data(), 2);
  
  // Get pointer to output tensor float values
  float* floatarr = output_tensors[0].GetTensorMutableData<float>();
  float* floatarr_mask = output_tensors[1].GetTensorMutableData<float>();
  
  printf("Done!\n");
  return 0;
}

编译命令:

g++ infer.cpp -o infer onnxruntime-linux-x64-1.4.0/lib/libonnxruntime.so.1.4.0 -Ionnxruntime-linux-x64-1.4.0/include/ -std=c++11

onnxruntime中Tensor支持的数据类型包括:

typedef enum ONNXTensorElementDataType {
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED,
  ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,   // maps to c type float
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8,   // maps to c type uint8_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8,    // maps to c type int8_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16,  // maps to c type uint16_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16,   // maps to c type int16_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32,   // maps to c type int32_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64,   // maps to c type int64_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING,  // maps to c++ type std::string
  ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL,
  ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16,
  ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE,      // maps to c type double
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32,      // maps to c type uint32_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64,      // maps to c type uint64_t
  ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64,   // complex with float32 real and imaginary components
  ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128,  // complex with float64 real and imaginary components
  ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16     // Non-IEEE floating-point format based on IEEE754 single-precision
} ONNXTensorElementDataType;

其中需要注意的是使用bool型,需要从uint_8的vector转为bool型:

std::vector<uint8_t> mask_tensor_values;
for(int i = 0; i < mask_tensor_size; i++){
	mask_tensor_values.push_back((uint8_t)(true));
}
auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value mask_tensor = Ort::Value::CreateTensor<bool>(mask_memory_info, reinterpret_cast<bool *>(mask_tensor_values.data()),mask_tensor_size, mask_node_dims.data(), 3);

性能测试

实际情况粗略统计,以transformer为例,onnxruntime-c++上的运行效率要比pytorch-python快2-5倍

- 参考:

C++-onnx:用onnxruntime部署自己的模型_u013250861的博客-CSDN博客

ONNX Runtime使用简单介绍_竹叶青lvye的博客-CSDN博客_onnxruntime 使用

onnxruntime的c++使用_chencision的博客-CSDN博客_c++ onnxruntime

onnxruntime C++ 使用(一)_SongpingWang的技术博客_51CTO博客

OnnxRunTime的推理流程_hjxu2016的博客-CSDN博客_onnxruntime

onnxruntime安装与使用(附实践中发现的一些问题)_本初-ben的博客-CSDN博客_onnxruntime安装

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/45376.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

3DVR全景旅游,最新数字化智慧文旅

导语&#xff1a; 随着科技的飞速发展&#xff0c;3DVR全景旅游正以其独特的特点和无限的优势&#xff0c;成为当今智慧文旅的领航者。穿戴上VR设备&#xff0c;只需一个轻轻的点击&#xff0c;你将被带入一个全新的数字世界&#xff0c;领略美景、探索奇迹。让我们一起深入了…

第119天:免杀对抗-二开CSShellcode函数修改生成模版修改反编译重打包(下)

知识点 #知识点&#xff1a; 1、CS-表面特征消除 2、CS-HTTP流量特征消除 3、CS-Shellcode特征消除#章节点&#xff1a; 编译代码面-ShellCode-混淆 编译代码面-编辑执行器-编写 编译代码面-分离加载器-编写 程序文件面-特征码定位-修改 程序文件面-加壳花指令-资源 代码加载面…

SSM企业固定资产智能管理系统的设计与实现【纯干货分享,M免费领取源码06298】

摘要 信息化社会内需要与之针对性的信息获取途径&#xff0c;但是途径的扩展基本上为人们所努力的方向&#xff0c;由于站在的角度存在偏差&#xff0c;人们经常能够获得不同类型信息&#xff0c;这也是技术最为难以攻克的课题。针对企业固定资产智能管理系统等问题&#xff0c…

springboot 项目启动不打印spring 启动日志

今天项目遇到一个很奇怪的问题&#xff0c;服务在启动时&#xff0c;不打印spring 的启动日志。经过排查发现是因为其他的依赖引入了 log4j 的依赖&#xff0c;因为我们的项目用的是logback&#xff0c;所以项目中没有log4j 的相关配置&#xff0c;所以干扰到了日志的打印 原因…

删除主表 子表外键没有索引的性能优化

整个表147M&#xff0c;执行时一个CPU耗尽&#xff0c; buffer gets 超过1个G&#xff0c; 启用并行也没有用 今天开发的同事问有个表上的数据为什么删不掉&#xff1f;我看了一下&#xff0c;也就不到100000条数据&#xff0c;表上有外键&#xff0c;等了5分钟hang在那里&…

python:基于GeoPandas和GeoViews库将GEDI激光高程数据映射到交互式地图

作者:CSDN @ _养乐多_ 本文将介绍 GEDI(Global Ecosystem Dynamics Investigation)激光雷达数据某数据点波形数据提取,并绘制图表,添加其他图表元素并使图表具有交互性。 在本文中,我们将探索如何打开、读取和处理GEDI数据,并利用地理信息处理库GeoPandas和地理空间数…

DevOps自动化平台开发之 Shell脚本执行的封装

基础知识 基于如下技术栈开发DevOps平台 Spring Boot Shell Ansible Git Gitlab Docker K8S Vue 1、spring boot starter的封装使用 2、Shell脚本的编写 3、Ansible 脚本的编写 4、Docker 的使用与封装设计 本篇介绍如何使用Java封装Linux命令和Shell脚本的使用 将其设计成…

云计算——ACA学习 数据中心概述

作者简介&#xff1a;一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭&#xff1a;低头赶路&#xff0c;敬事如仪 个人主页&#xff1a;网络豆的主页​​​​​ 目录 写在前面 课程目标 学前了解 一.数据中心定义 二.数据中心涉及的主要标准与规范 …

和chatgpt学架构04-路由开发

目录 1 什么是路由2 如何设置路由2.1 安装依赖2.2 创建路由文件2.3 创建首页2.4 编写HomePage2.5 更新路由配置2.6 让路由生效 3 测试总结 要想使用vue实现页面的灵活跳转&#xff0c;其中路由配置是必不可少的&#xff0c;我们在做开发的时候&#xff0c;先需要了解知识点&…

十、数据结构——链式队列

数据结构中的链式队列 目录 一、链式队列的定义 二、链式队列的实现 三、链式队列的基本操作 ①初始化 ②判空 ③入队 ④出队 ⑤获取长度 ⑥打印 四、循环队列的应用 五、总结 六、全部代码 七、结果 在数据结构中&#xff0c;队列&#xff08;Queue&#xff09;是一种常见…

【数据分享】1999—2021年地级市地方一般公共预算收支状况(科学技术支出/教育支出等)

在之前的文章中&#xff0c;我们分享过基于2000-2022年《中国城市统计年鉴》整理的1999-2021年地级市的人口相关数据、各类用地面积数据、污染物排放和环境治理相关数据、房地产投资情况和商品房销售面积、社会消费品零售总额和年末金融机构存贷款余额&#xff08;可查看之前的…

STM32CubeIDE(串口)

目录 一、轮询模式 1.1 配置USART2为异步模式 1.2 500ms发送一次消息 1.3 通信结果 1.4 串口控制LED 二、中断收发 2.1 开启中断 2.2 中断发送接收 2.2.1 中断发送只需要调用接口 2.2.2 中断接收 2.3 实验结果 三、DMA模式与收发不定长数据 3.1 DMA通道配置 3.2 DMA…

【MATLAB绘图】

MATLAB绘图函数&#xff1a;Plot函数详解 介绍 MATLAB是一种常用的科学计算和数据可视化工具&#xff0c;它提供了强大的绘图函数&#xff0c;使用户能够创建各种类型的图表和图形。 基本语法 plot函数的基本语法如下&#xff1a; plot(x, y)其中&#xff0c;x和y是长度相…

Vue 本地应用 图片切换 v-show v-bind实践

点击切换图片的本质&#xff0c;其实修改的是img标签的src属性。 图片的地址有很多个&#xff0c;在js当中通过数组来保存多个数据&#xff0c;数组的取值结合索引&#xff0c;根据索引可以来判断是否是第一张还是最后一张。 图片的变化本质是src属性被修改了&#xff0c;属性…

Shell输出帮助手册

代码&#xff1a; 帮助手册雏形 function help(){echo -e "Help manual":echo -e " -h. -- help View the help manual"echo -e " install Installation"echo -e " uninstall Uninstall" }case "$1&qu…

设计模式——单例模式

1 概述 单例模式就是保证一个类只有一个对象实例。 为了保证无法创建多余的对象实例&#xff0c;单例类中需要自己创建对象实例&#xff0c;并把自己的构造方法私有化以防止其他地方调用创建对象&#xff0c;且需要提供一个公共的方法给其他类来获取该单例类的实例。 同时单例…

初识TDMQ

目录 一&#xff1a;需求背景二&#xff1a;相关文档三&#xff1a;验证TDMQ广播消息 一&#xff1a;需求背景 目前公司需要将决策引擎处理的结果&#xff0c; 一部分数据交给下游分析/入黑/通知等功能。因此就需要决策引擎生产结果让多方下游去消费。 而我需要实现下游的一部…

flutter开发实战-jsontodart及 生成Dart Model类

flutter开发实战-jsontodart及 生成Dart Model类。 在开发中&#xff0c;经常遇到请求的数据Json需要转换成model类。这里记录一下Jsontodart生成Dart Model类的方案。 一、JSON生成Dart Model类 在开发中经常用到将json转成map或者list。通过json.decode() 可以方便 JSON 字…

AMEYA360谈:村田新款超声波传感器,能实现15cm近距离检测

随着近年来ADAS的精度越来越高&#xff0c;对用于自动刹车和自动泊车的障碍物检测系统提出了更高的检测性能要求。配备在障碍物检测系统中的超声波传感器需要在短距离和长距离的情况下都具有很高的检测精度&#xff0c;并且谐振频率和静电容量的公差很小&#xff0c;以稳定精度…

AI学习笔记三:编写检测的yolov5测试代码

若该文为原创文章&#xff0c;转载请注明原文出处。 通过detect.py代码测试通过后&#xff0c;阅读detect.py代码发现&#xff0c;有些难以看懂&#xff0c;看得有点蒙蒙的&#xff0c; 所以编写了一个简单的测试程序。 代码如下&#xff1a; import cv2 import numpy as np…