【MATLAB第60期】基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型

【MATLAB第60期】源码分享 | 基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型

一、简要介绍

  1. ARMAX模型相比ARMA考虑了影响因素 ,即可以实现基于时间序列数据的回归预测。
  2. 目前,ARMAX预测未来功能存在困难,本篇文章不予介绍。大致思路需要通过时间滞后构造数据,使前时间段的X预测后时间段的Y,即多步预测。
  3. 此示例展示如何将时间序列中的时间划分为预采样期T0、训练期Ty和预测期Tf,并显示了如何提供适当数量的观测值来初始化用于估计和预测的动态模型。
  4. 通过定义ARMA模型中的参数,可实现ARIMAX和SARIMAX模型。本文介绍最基础的ARMAX模型。
    在这里插入图片描述

二、导入数据

  1. 本篇文章案例数据采用3输入1输出,62个样本(1962-2023年)。
  2. 本文用table格式打开,方便对时间进行处理。
clear all
data=readtable('数据集.xlsx');
DataTable = table2timetable(data);%将DataTable转换为时间表。
varnames = ["Y" "X1" "X2" "X3" ];
Tbl = rmmissing(DataTable(:,varnames));%通过应用列表删除从数据中删除所有前导NaN。
T = size(Tbl,1) %总样本量
Y = Tbl.Y; %因变量
X = Tbl{:,varnames(2:end)};%变量

在这里插入图片描述

三、建立模型

为了训练和预测模型,估计必须有足够的预采样数据来初始化自回归项,同样,要从训练模型中预测,预测必须有足够的预采样样本。
此外,预测期中的回归分量需要预测历史数据或未来的预测数据Y,那么需要有与之对应的X,不然无法预测未来。

  1. 本文考虑一个ARMAX(1,2)模型,该模型以X1、X2、X3为外生变量,预测Y。
  2. 将样本的时间线划分为预采样、训练和预测时段。将模型拟合到训练样本,并使用预采样数据来初始化自回归项。然后,根据训练模型对Y进行预测。
  3. 指定预采样数据,以初始化自回归项。一般预采样数据个数为Mdl.P,因为p在之前就设置好了,所以手动设置为1。 -
  4. 指定训练数据,选择2-56作为训练数据。输入数据XEst则为X2-X56,输出为Y2-Y56
  5. 指定预测数据,57-62共6个数据进行测试。输入数据则为X57-X62,输出为Y57-Y62
idxpresample = 1;%预采样数据y0es个数,1
idxestimate = 2:56;%训练数据yest 个数,55
idxforecast = 57:T;%预测数据个数 ,6
  1. 建立ARMAX(1,2)模型
Mdl = arima(1,0,2); % P D Q
%ARIMAX(1,0,2) Model (Gaussian Distribution)
Effective Sample Size: 55
Number of Estimated Parameters: 8
LogLikelihood: -162.152
AIC: 340.303
BIC: 356.362

            Value     StandardError    TStatistic    PValue
            ______    _____________    __________    ______

Constant    -28.86        12.92          -2.23        0.03 
AR{1}         0.20         0.05           4.02        0.00 
MA{1}         0.65         0.16           4.19        0.00 
MA{2}         0.05         0.18           0.31        0.76 
Beta(1)       3.42         0.28          12.37        0.00 
Beta(2)       0.00         0.00           3.19        0.00 
Beta(3)       1.96         0.76           2.57        0.01 
Variance     21.30         5.16           4.13        0.00 
  1. 在训练样本结束时指定必要的观测值作为样本前数据进行预测,需指定训练期的数据,且数据个数至少为1,本文取两个,即训练输入的最后2个值X55-X56和训练输出的最后2个值Y55-Y56。
  2. 预测数据,假设预测的数量为M,则M必须小于等于XF的个数,不然无法运行。本文指定M=6,预测期的输入变量XF为X57-X62。
 [yf,ymse] = forecast(Mdl,M);
  1. 置信区间预测
ci = yf + 1.96*[-sqrt(ymse) sqrt(ymse)];
  1. 绘图。因年份较多,故只展示后面一半的数据。
yrs = year(Tbl.Time(round(T/2):end));%绘制后半部分的响应数据和预测。

figure;
plot(yrs,Tbl.Y(round(T/2):end),"b","LineWidth",2);
hold on
plot(yrs(end-size(idxforecast,2)+1:end),yf,"r--","LineWidth",2);
h = gca;
px = yrs([end - size(idxforecast,2)+1 end end end - size(idxforecast,2)+1]);
py = h.YLim([1 1 2 2]);
hp = patch(px,py,[0.9 0.9 0.9]);
uistack(hp,"bottom");
axis tight
title("ARMAX模型");
legend(["预测区段" "实际值" "预测值"])

四、效果展示

在这里插入图片描述

五、代码获取

后台私信回复“60期”即可获取下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/45150.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Javaweb+Vue3实现淘宝卖鞋前后端分离项目

前端技术栈:HTMLCSSJavaScriptVue3 后端技术栈:JavaSEMySQLJDBCJavaWeb 文章目录 前言1️⃣登录功能登录后端登录前端 2️⃣商家管理查询商家查询商家后端查询商家前端 增加商家增加商家后端增加商家前端 删除商家删除商家后端删除商家前端 修改商家修改…

小程序如何删除/上架/下架商品

在小程序中,产品的删除、上架和下架是常见的操作,可以根据实际需求来管理商品的展示与销售。下面将介绍如何在小程序中删除上架下架商品的具体步骤。 进入商品管理页面, 在个人中心点击管理入口,然后找到“商品管理”菜单并点击。…

Linux虚拟机克隆后无法上网

打开终端执行以下命令 sudo mv /var/lib/NetworkManager /var/lib/NetworkManager.bak 重启虚拟机,打开终端执行以下命令: ip addr 就能够上网并且有新的IP,亲测有效!

Stephen Wolfram:概率从何而来?

Where Do the Probabilities Come From? 概率从何而来? OK, so ChatGPT always picks its next word based on probabilities. But where do those probabilities come from? Let’s start with a simpler problem. Let’s consider generating English text one …

Stephen Wolfram:一次只添加一个词

It’s Just Adding One Word at a Time 一次只添加一个词 That ChatGPT can automatically generate something that reads even superficially like human-written text is remarkable, and unexpected. But how does it do it? And why does it work? My purpose here is t…

C#安装包制作过程详解

本文讲解C#安装包制作过程。 文章目录 一、安装打包插件二、项目的部署与安装三、制作安装包时注意路径一、安装打包插件 打开VS2017:工具 --> 扩展和更新 --> 联机,搜索Microsoft Visual Studio Installer Projects,如图: 下载Microsoft Visual Studio Installe…

我在VScode学Python(Python函数,Python模块导入)

我的个人博客主页:如果’真能转义1️⃣说1️⃣的博客主页 (1)关于Python基本语法学习---->可以参考我的这篇博客《我在VScode学Python》 (2)pip是必须的在我们学习python这门语言的过程中Python ---->&a…

vue中的异步请求Axios(个人学习笔记五)

目录 友情提醒第一章、传统的jQuery方式获取数据1.1)后端controller层代码1.2)传统的jQuery获取数据1.3)使用vue对象和jQuery获取异步数据 第二章、使用Axios获取数据2.1)axios简介2.2)axios两种使用方式2.3&#xff0…

Clion开发stm32之微妙延迟(采用nop指令实现)

前言 需要借助逻辑分析仪动态调整参数此次测试的开发芯片为stm32f103vet6 延迟函数 声明 #define NOP_US_DELAY_MUL_CNT 5 /*nop 微妙延迟需要扩大的倍数(根据实际动态修改)*/ void bsp_us_delay_nop(uint32_t us);void bsp_ms_delay_nop(uint32_t ms);定义 void bsp_us_dela…

Java连锁门诊医院HIS信息管理系统源码

Java连锁门诊医院HIS信息管理系统源码:SaaS运维平台多医院多机构多门诊入驻强大的电子病历完整开发文档 一、系统概述 ❉采用主流成熟技术,软件结构简洁、代码规范易阅读,SaaS应用,全浏览器访问前后端分离,多服务协同…

CRM系统化整合从N-1做减法实践 | 京东物流技术团队

1 背景 京销易系统已经接入大网、KA以及云仓三个条线商机,每个条线商机规则差异比较大,当前现状是独立实现三套系统分别做支撑。 2 目标 2022年下半年CRM目标是完成9个新条线业务接入,完成销售过程线上化,实现销售规则统一。 …

IDEA使用lombok实体类加上@Data注解后无法找到get和set方法

文章目录 一、问题原因二、解决方法1.File→Settings2.Plugins→搜索"lombok"→Install3.Restart IDE(重启IDEA) 一、问题原因 IDEA没有安装lombok插件 二、解决方法 1.File→Settings 2.Plugins→搜索"lombok"→Install 3.Restart…

RocketMQ 5.0 无状态实时性消费详解

作者:绍舒 背景 RocketMQ 5.0 版本引入了 Proxy 模块、无状态 pop 消费机制和 gRPC 协议等创新功能,同时还推出了一种全新的客户端类型:SimpleConsumer。 SimpleConsumer 客户端采用了无状态的 pop 机制,彻底解决了在客户端发布…

MB5B在HDB上的性能调优

背景 MB5B是用于查询物料的收发以及现有库存。日常业务查询,通常会按照月份查看某片地区物料的库存以及收发状态。 调优思路 按照客户日常操作的习惯,得到日常操作的数据范围,选出数据量最为突出最有代表性的地区和物料;利用SE30分别运行不同数量级的数据,比如20个门店、…

基于LoRA进行Stable Diffusion的微调

文章目录 基于LoRA进行Stable Diffusion的微调数据集模型下载环境配置微调过程 基于LoRA进行Stable Diffusion的微调 数据集 本次微调使用的数据集为: LambdaLabs的Pokemon数据集 使用git clone命令下载数据集 git clone https://huggingface.co/datasets/lambd…

17. 电话号码的字母组合

题目描述 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 示例 1: 输入:digits "23" …

数据结构的复杂度

> 作者简介:დ旧言~,目前大一,现在学习Java,c,c,Python等 > 座右铭:松树千年终是朽,槿花一日自为荣。 > 望小伙伴们点赞👍收藏✨加关注哟💕&#x1…

结构型设计模式之桥接模式【设计模式系列】

系列文章目录 C技能系列 Linux通信架构系列 C高性能优化编程系列 深入理解软件架构设计系列 高级C并发线程编程 设计模式系列 期待你的关注哦!!! 现在的一切都是为将来的梦想编织翅膀,让梦想在现实中展翅高飞。 Now everythi…

【玩转Linux】标准io缓冲区的操作

(꒪ꇴ꒪ ),hello我是祐言博客主页:C语言基础,Linux基础,软件配置领域博主🌍快上🚘,一起学习!送给读者的一句鸡汤🤔:集中起来的意志可以击穿顽石!作者水平很有限,如果发现错误&#x…

【前缀和】LeetCode 560. 和为k的字数组

文章目录 题目描述方法1 暴力方法2 暴力优化方法3 前缀和方法4 前缀和优化 题目描述 力扣560题,链接:https://leetcode.cn/problems/subarray-sum-equals-k 方法1 暴力 暴力法,三重for循环,时间复杂度 O ( N 3 ) O(N^3) O(N3)&a…