【深度学习笔记】7_4 动量法momentum

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

7.4 动量法

在7.2节(梯度下降和随机梯度下降)中我们提到,目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向。因此,梯度下降也叫作最陡下降(steepest descent)。在每次迭代中,梯度下降根据自变量当前位置,沿着当前位置的梯度更新自变量。然而,如果自变量的迭代方向仅仅取决于自变量当前位置,这可能会带来一些问题。

7.4.1 梯度下降的问题

让我们考虑一个输入和输出分别为二维向量 x = [ x 1 , x 2 ] ⊤ \boldsymbol{x} = [x_1, x_2]^\top x=[x1,x2]和标量的目标函数 f ( x ) = 0.1 x 1 2 + 2 x 2 2 f(\boldsymbol{x})=0.1x_1^2+2x_2^2 f(x)=0.1x12+2x22。与7.2节中不同,这里将 x 1 2 x_1^2 x12系数从 1 1 1减小到了 0.1 0.1 0.1。下面实现基于这个目标函数的梯度下降,并演示使用学习率为 0.4 0.4 0.4时自变量的迭代轨迹。

%matplotlib inline
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
import torch

eta = 0.4 # 学习率

def f_2d(x1, x2):
    return 0.1 * x1 ** 2 + 2 * x2 ** 2

def gd_2d(x1, x2, s1, s2):
    return (x1 - eta * 0.2 * x1, x2 - eta * 4 * x2, 0, 0)

d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

输出:

epoch 20, x1 -0.943467, x2 -0.000073

在这里插入图片描述

可以看到,同一位置上,目标函数在竖直方向( x 2 x_2 x2轴方向)比在水平方向( x 1 x_1 x1轴方向)的斜率的绝对值更大。因此,给定学习率,梯度下降迭代自变量时会使自变量在竖直方向比在水平方向移动幅度更大。那么,我们需要一个较小的学习率从而避免自变量在竖直方向上越过目标函数最优解。然而,这会造成自变量在水平方向上朝最优解移动变慢。

下面我们试着将学习率调得稍大一点,此时自变量在竖直方向不断越过最优解并逐渐发散。

eta = 0.6
d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

输出:

epoch 20, x1 -0.387814, x2 -1673.365109

在这里插入图片描述

7.4.2 动量法

动量法的提出是为了解决梯度下降的上述问题。由于小批量随机梯度下降比梯度下降更为广义,本章后续讨论将沿用7.3节(小批量随机梯度下降)中时间步 t t t的小批量随机梯度 g t \boldsymbol{g}_t gt的定义。设时间步 t t t的自变量为 x t \boldsymbol{x}_t xt,学习率为 η t \eta_t ηt
在时间步 0 0 0,动量法创建速度变量 v 0 \boldsymbol{v}_0 v0,并将其元素初始化成0。在时间步 t > 0 t>0 t>0,动量法对每次迭代的步骤做如下修改:

v t ← γ v t − 1 + η t g t , x t ← x t − 1 − v t , \begin{aligned} \boldsymbol{v}_t &\leftarrow \gamma \boldsymbol{v}_{t-1} + \eta_t \boldsymbol{g}_t, \\ \boldsymbol{x}_t &\leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{v}_t, \end{aligned} vtxtγvt1+ηtgt,xt1vt,

其中,动量超参数 γ \gamma γ满足 0 ≤ γ < 1 0 \leq \gamma < 1 0γ<1。当 γ = 0 \gamma=0 γ=0时,动量法等价于小批量随机梯度下降。

在解释动量法的数学原理前,让我们先从实验中观察梯度下降在使用动量法后的迭代轨迹。

def momentum_2d(x1, x2, v1, v2):
    v1 = gamma * v1 + eta * 0.2 * x1
    v2 = gamma * v2 + eta * 4 * x2
    return x1 - v1, x2 - v2, v1, v2

eta, gamma = 0.4, 0.5
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

输出:

epoch 20, x1 -0.062843, x2 0.001202

在这里插入图片描述

可以看到使用较小的学习率 η = 0.4 \eta=0.4 η=0.4和动量超参数 γ = 0.5 \gamma=0.5 γ=0.5时,动量法在竖直方向上的移动更加平滑,且在水平方向上更快逼近最优解。下面使用较大的学习率 η = 0.6 \eta=0.6 η=0.6,此时自变量也不再发散。

eta = 0.6
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

输出:

epoch 20, x1 0.007188, x2 0.002553

在这里插入图片描述

7.4.2.1 指数加权移动平均

为了从数学上理解动量法,让我们先解释一下指数加权移动平均(exponentially weighted moving average)。给定超参数 0 ≤ γ < 1 0 \leq \gamma < 1 0γ<1,当前时间步 t t t的变量 y t y_t yt是上一时间步 t − 1 t-1 t1的变量 y t − 1 y_{t-1} yt1和当前时间步另一变量 x t x_t xt的线性组合:

y t = γ y t − 1 + ( 1 − γ ) x t . y_t = \gamma y_{t-1} + (1-\gamma) x_t. yt=γyt1+(1γ)xt.

我们可以对 y t y_t yt展开:

y t = ( 1 − γ ) x t + γ y t − 1 = ( 1 − γ ) x t + ( 1 − γ ) ⋅ γ x t − 1 + γ 2 y t − 2 = ( 1 − γ ) x t + ( 1 − γ ) ⋅ γ x t − 1 + ( 1 − γ ) ⋅ γ 2 x t − 2 + γ 3 y t − 3 … \begin{aligned} y_t &= (1-\gamma) x_t + \gamma y_{t-1}\\ &= (1-\gamma)x_t + (1-\gamma) \cdot \gamma x_{t-1} + \gamma^2y_{t-2}\\ &= (1-\gamma)x_t + (1-\gamma) \cdot \gamma x_{t-1} + (1-\gamma) \cdot \gamma^2x_{t-2} + \gamma^3y_{t-3}\\ &\ldots \end{aligned} yt=(1γ)xt+γyt1=(1γ)xt+(1γ)γxt1+γ2yt2=(1γ)xt+(1γ)γxt1+(1γ)γ2xt2+γ3yt3

n = 1 / ( 1 − γ ) n = 1/(1-\gamma) n=1/(1γ),那么 ( 1 − 1 / n ) n = γ 1 / ( 1 − γ ) \left(1-1/n\right)^n = \gamma^{1/(1-\gamma)} (11/n)n=γ1/(1γ)。因为

lim ⁡ n → ∞ ( 1 − 1 n ) n = exp ⁡ ( − 1 ) ≈ 0.3679 , \lim_{n \rightarrow \infty} \left(1-\frac{1}{n}\right)^n = \exp(-1) \approx 0.3679, nlim(1n1)n=exp(1)0.3679,

所以当 γ → 1 \gamma \rightarrow 1 γ1时, γ 1 / ( 1 − γ ) = exp ⁡ ( − 1 ) \gamma^{1/(1-\gamma)}=\exp(-1) γ1/(1γ)=exp(1),如 0.9 5 20 ≈ exp ⁡ ( − 1 ) 0.95^{20} \approx \exp(-1) 0.9520exp(1)。如果把 exp ⁡ ( − 1 ) \exp(-1) exp(1)当作一个比较小的数,我们可以在近似中忽略所有含 γ 1 / ( 1 − γ ) \gamma^{1/(1-\gamma)} γ1/(1γ)和比 γ 1 / ( 1 − γ ) \gamma^{1/(1-\gamma)} γ1/(1γ)更高阶的系数的项。例如,当 γ = 0.95 \gamma=0.95 γ=0.95时,

y t ≈ 0.05 ∑ i = 0 19 0.9 5 i x t − i . y_t \approx 0.05 \sum_{i=0}^{19} 0.95^i x_{t-i}. yt0.05i=0190.95ixti.

因此,在实际中,我们常常将 y t y_t yt看作是对最近 1 / ( 1 − γ ) 1/(1-\gamma) 1/(1γ)个时间步的 x t x_t xt值的加权平均。例如,当 γ = 0.95 \gamma = 0.95 γ=0.95时, y t y_t yt可以被看作对最近20个时间步的 x t x_t xt值的加权平均;当 γ = 0.9 \gamma = 0.9 γ=0.9时, y t y_t yt可以看作是对最近10个时间步的 x t x_t xt值的加权平均。而且,离当前时间步 t t t越近的 x t x_t xt值获得的权重越大(越接近1)。

7.4.2.2 由指数加权移动平均理解动量法

现在,我们对动量法的速度变量做变形:

v t ← γ v t − 1 + ( 1 − γ ) ( η t 1 − γ g t ) . \boldsymbol{v}_t \leftarrow \gamma \boldsymbol{v}_{t-1} + (1 - \gamma) \left(\frac{\eta_t}{1 - \gamma} \boldsymbol{g}_t\right). vtγvt1+(1γ)(1γηtgt).

由指数加权移动平均的形式可得,速度变量 v t \boldsymbol{v}_t vt实际上对序列 { η t − i g t − i / ( 1 − γ ) : i = 0 , … , 1 / ( 1 − γ ) − 1 } \{\eta_{t-i}\boldsymbol{g}_{t-i} /(1-\gamma):i=0,\ldots,1/(1-\gamma)-1\} {ηtigti/(1γ):i=0,,1/(1γ)1}做了指数加权移动平均。换句话说,相比于小批量随机梯度下降,动量法在每个时间步的自变量更新量近似于将最近 1 / ( 1 − γ ) 1/(1-\gamma) 1/(1γ)个时间步的普通更新量(即学习率乘以梯度)做了指数加权移动平均后再除以 1 − γ 1-\gamma 1γ。所以,在动量法中,自变量在各个方向上的移动幅度不仅取决当前梯度,还取决于过去的各个梯度在各个方向上是否一致。在本节之前示例的优化问题中,所有梯度在水平方向上为正(向右),而在竖直方向上时正(向上)时负(向下)。这样,我们就可以使用较大的学习率,从而使自变量向最优解更快移动。

7.4.3 从零开始实现

相对于小批量随机梯度下降,动量法需要对每一个自变量维护一个同它一样形状的速度变量,且超参数里多了动量超参数。实现中,我们将速度变量用更广义的状态变量states表示。

features, labels = d2l.get_data_ch7()

def init_momentum_states():
    v_w = torch.zeros((features.shape[1], 1), dtype=torch.float32)
    v_b = torch.zeros(1, dtype=torch.float32)
    return (v_w, v_b)

def sgd_momentum(params, states, hyperparams):
    for p, v in zip(params, states):
        v.data = hyperparams['momentum'] * v.data + hyperparams['lr'] * p.grad.data
        p.data -= v.data

我们先将动量超参数momentum设0.5,这时可以看成是特殊的小批量随机梯度下降:其小批量随机梯度为最近2个时间步的2倍小批量梯度的加权平均。

注:个人认为这里不应该是“加权平均”而应该是“加权和”,因为根据7.4.2.2节分析,加权平均最后除以了 1 − γ 1-\gamma 1γ,所以就相当于没有进行平均。

d2l.train_ch7(sgd_momentum, init_momentum_states(),
              {'lr': 0.02, 'momentum': 0.5}, features, labels)

输出:

loss: 0.245518, 0.042304 sec per epoch

在这里插入图片描述

将动量超参数momentum增大到0.9,这时依然可以看成是特殊的小批量随机梯度下降:其小批量随机梯度为最近10个时间步的10倍小批量梯度的加权平均。我们先保持学习率0.02不变。

同理,这里不应该是“加权平均”而应该是“加权和”。

d2l.train_ch7(sgd_momentum, init_momentum_states(),
              {'lr': 0.02, 'momentum': 0.9}, features, labels)

输出:

loss: 0.252046, 0.095708 sec per epoch

在这里插入图片描述

可见目标函数值在后期迭代过程中的变化不够平滑。直觉上,10倍小批量梯度比2倍小批量梯度大了5倍,我们可以试着将学习率减小到原来的1/5。此时目标函数值在下降了一段时间后变化更加平滑。

这也印证了刚刚的观点。

d2l.train_ch7(sgd_momentum, init_momentum_states(),
              {'lr': 0.004, 'momentum': 0.9}, features, labels)

输出:

loss: 0.242905, 0.073496 sec per epoch

在这里插入图片描述

7.4.4 简洁实现

在PyTorch中,只需要通过参数momentum来指定动量超参数即可使用动量法。

d2l.train_pytorch_ch7(torch.optim.SGD, {'lr': 0.004, 'momentum': 0.9},
                    features, labels)

输出:

loss: 0.253280, 0.060247 sec per epoch

在这里插入图片描述

小结

  • 动量法使用了指数加权移动平均的思想。它将过去时间步的梯度做了加权平均,且权重按时间步指数衰减。
  • 动量法使得相邻时间步的自变量更新在方向上更加一致。

注:除代码外本节与原书此节基本相同,原书传送门

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/449649.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024年家政预约上门服务小程序【用户端+商家端+师傅端】源码

024最新家政预约上门服务小程序源码 主要功能:商家入住&#xff0c;师傅入住&#xff0c;缴纳保正金 支持师傅&#xff0c;抢单派单 支持多城市多门下单&#xff0c;支持预约上门服务到店核销 支持补差价义价&#xff0c;支持区域服务限制 基于thinkphp和原生小程序开发

在文件夹下快速创建vue项目搭建vue框架详细步骤

一、首先在你的电脑目录下新建一个文件夹 进入该文件夹并打开控制台&#xff08;输入cmd指令&#xff09; 进入控制台后输入 vue create springboot_vue (自己指定名称) 如果出现这类报错如&#xff1a;npm install 的报错npm ERR! network request to http://registry.cnp…

怎样将PPT转成文本格式?PPT文本一键生成文本格式 工作经验分享

在日常工作和学习中&#xff0c;我们经常需要将PPT文件转换为文本格式&#xff0c;以便更好地进行编辑、搜索和分享。下面&#xff0c;我将介绍2种常见的PPT转文本格式的方法&#xff0c;帮助大家轻松实现这一需求。 方法一、使用汇帮PDF转换器软件里的“PPT文件操作”菜单进行…

Vue3 ElementPlus-table组件(合计)合并列

在使用ElementPlus的table组件的时候&#xff0c;我们通常会处理合计&#xff0c;当遇到合计行需要合并列的时候&#xff0c;可以这样做。 核心就是获取标签&#xff0c;对标签的CSS样式进行设置&#xff0c;以达到合并单元格的效果。 Template <el-tablemax-height"ca…

2024蓝桥杯每日一题(时间日期)

一、第一题&#xff1a;日期差值 解题思路&#xff1a;模拟 写一个计算时间的板子两者相减 【Python程序代码】 mon [0,31,28,31,30,31,30,31,31,30,31,30,31] def pd(x):if x%4000 or (x%40 and x%100!0):return Truereturn False def get_day(y,m,d):res 0for i …

分布式之LoadBalancer

一、LoadBalancer介绍 Spring Cloud LoadBalancer是Spring Cloud官方自己提供的客户端负载均衡器,抽象和实现&#xff0c;用来替代Ribbon&#xff08;已经停更&#xff09;&#xff0c; 二、Ribbon和Loadbalance 对比 组件组件提供的负载策略支持负载的客户端Ribbon随机 Ran…

芯片顶级盛会Hotchips 2021年-苹果M1横空出世(附全套资料下载)

3.22 芯片顶级盛会Hotchips 2021年-未来芯片论坛及资料下载w0 提示&#xff1a;下载链接在文章最后。 HOTCHIPS是一个关于计算机体系结构和电子设计的会议&#xff0c;主要探讨芯片设计、存储器、能源效率、机器学习和人工智能等方面的发展。该会议每年都会召开一次&#xff0…

狂飙Linux平台,PostgreSQL16部署大全

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

SpringBlade error/list SQL 注入漏洞复现

0x01 产品简介 SpringBlade 是一个由商业级项目升级优化而来的 SpringCloud 分布式微服务架构、SpringBoot 单体式微服务架构并存的综合型项目。 0x02 漏洞概述 SpringBlade 框架后台 /api/blade-log/error/list路径存在SQL注入漏洞,攻击者除了可以利用 SQL 注入漏洞获取数…

Qt/QML编程之路:openglwidget和倒车影像的切换(43)

关于如何实现一个基于OpenGL的3d 图形,这个有很多专门的介绍,我在开发中遇到了这么一个问题: 如何实现一个倒车影像的video显示与一个3D物体显示的切换,因为开窗在同样的一个位置,如果车子倒车启动,则需要将原本显示3D的地方切换为视频图像的显示。 class testOpenGl : …

[SUCTF 2019]EasySQL --不会编程的崽

即使题目再简单&#xff0c;大佬的思维我还是跟不上哎。。。继续更新sql的第二天 看这个样子就知道是什么了----堆叠注入 老样子&#xff0c;先fuzz一下过滤了哪些关键字。基本如下 from flag handler prepare information_schema performance_schema等。先随便测试一下 吧。…

【io.net空投】交互攻略

一、io.net是什么 Io.net 是一个基于 Solana 的DePIN项目&#xff0c;为人工智能 (AI) 和机器学习 (ML) 公司聚合 GPU 资源。 Io.net 的例子&#xff0c;就是鼓励大家出借 GPU 算力&#xff0c;为 AI 或机器学习&#xff08;ML&#xff09;公司提供更低价、更有效率的算力资源…

jmeter 中用python 实现请求参数的随机

首先需要下载插件来让jmeter支持python脚本 下载地址&#xff1a;https://www.jython.org/download&#xff0c;下载完成后放到jmeter安装目录的lib文件夹下 放置完成后需要重启jmeter&#xff0c;添加JSR223 PreProcessor&#xff0c;Language下拉框中多2项 选择第一项&#…

Python的特性——跟老吕学Python编程

Python的特性——跟老吕学Python编程 Python的特性1.Python易学易用2.Python是解释型语言3.Python是交互式的4.Python是一种多范式语言5.Python的标准库6.Python是开源的7.Python是跨平台的8.用于GUI应用程序的Python9.Python的数据库连接10.Python是可扩展的11.Python拥有活跃…

在ubuntu上安装FastSufer【本机安装】

亲测:FastSurfer分割并重建一个大脑需要1个小时,而freeSurfer需要8个小时。确实很快! 这里我在网页端搭建了一个小的工具包,里面集成了经典的freeSurfer和较快的FastSurfer。如果你不想安装或者手头没有linux设备,您也可以直接从以下网址直接使用,跳过繁琐的安装步骤!!…

【论文阅读】VMamba:视觉状态空间模型

文章目录 VMamba:视觉状态空间模型摘要相关工作状态空间模型 方法准备状态空间模型离散化选择扫描机制 2D 选择扫描VMamba 模型整体结构VSS块 实验分析实验有效感受野输入尺度 总结 VMamba:视觉状态空间模型 摘要 受最近提出的状态空间模型启发&#xff0c;我们提出了视觉状态…

软件测试APP完整测试作业流程(附流程图),公司级软件测试流程化办公

目录 1. 概述 2. 软件测试流程 3. 软件测试周期人员活动图 4. 总结 1. 概述 1.1 目的 有效的保证软件质量&#xff1b; 有效的制定不同测试类型&#xff08;软件系统测试、音频主观性测试、Field Trial、专项测试、自动化测试、性 能测试、用户体验测试&#xff09;的软件…

BUUCTF---[MRCTF2020]你传你呢1

1.题目描述 2.打开题目链接 3.上传shell.jpg文件&#xff0c;显示连接成功&#xff0c;但是用蚁剑连接却连接不上。shell文件内容为 <script languagephp>eval($_REQUEST[cmd]);</script>4.用bp抓包&#xff0c;修改属性 5.需要上传一个.htaccess的文件来把jpg后缀…

C++ STL --stack 和queue,priority_queue

1. stack的介绍和使用 1.1 stack的介绍 https://cplusplus.com/reference/stack/stack/?kwstack 翻译: 1. stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行元素的插入与提取操作。 2. stack是作为容器适配…

嵌入式学习第二十七天!(TCP并发模型)

TCP并发模型&#xff1a; 1. TCP多线程模型&#xff1a; 缺点&#xff1a;创建线程会带来资源开销&#xff0c;能够实现的并发量比较有限。 2. IO模型&#xff1a; 1. 阻塞IO&#xff1a; 没有数据到来时&#xff0c;可以让任务挂起&#xff0c;节省CPU资源开销&#xff0c;提…