C++ STL --stack 和queue,priority_queue

1. stack的介绍和使用

        1.1 stack的介绍

        https://cplusplus.com/reference/stack/stack/?kw=stack

翻译:

1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。

2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。

3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下

操作:

empty:判空操作

back:获取尾部元素操作

push_back:尾部插入元素操作

pop_back:尾部删除元素操作

4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器, 默认情况下使用deque。

1.2 stack的使用 

        

 最小栈     z力扣

class MinStack {
 
public:
    stack<int> stk;
    stack<int> m_stk;
    MinStack() {
        m_stk.push(INT_MAX);
    }
    
    void push(int val) {
        stk.push(val);
        int minV=min(m_stk.top(),val);
        m_stk.push(minV);
         


    }
    
    void pop() {
        stk.pop();
        m_stk.pop();
    }
    
    int top() {
        return stk.top();
    }
    
    
    int getMin() {
        
        return m_stk.top();
   

   
    }



};

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack* obj = new MinStack();
 * obj->push(val);
 * obj->pop();
 * int param_3 = obj->top();
 * int param_4 = obj->getMin();
 */

栈的压入、弹出序列_牛客题霸_牛客网

逆波兰表达式求值     力扣

用栈实现队列  

1.3 stack的模拟实现 

从栈的接口中可以看出,栈实际是一种特殊的vector,因此使用vector完全可以模拟实现stack。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

namespace myspace
{

    template <class T>
    class stack
    {
    public:
        stack() {}
        void push(const T &x)
        {
            _c.push_back(x);
        }

        void pop()
        {
            _c.pop_back();
        }

        T &top()
        {
            return _c.back();
        }

        const T &top() const
        {
            return _c.back();
        }

        size_t size() const
        {
            return _c.size();
        }

        bool empty() const
        {
            return _c.empty();
        }

    private:
        vector<T> _c;
    };

}

int main()
{

    system("pause");
    return 0;
}

2. queue的介绍和使用

        2.1 queue的介绍

         https://cplusplus.com/reference/queue/queue/

1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。

2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的 成员函数来访问其元素。元素从队尾入队列,从队头出队列。

3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:

empty:检测队列是否为空

size:返回队列中有效元素的个数

front:返回队头元素的引用

back:返回队尾元素的引用

push_back:在队列尾部入队列

pop_front:在队列头部出队列

4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque。

2.2 queue的使用

         请课后练习下面的OJ题目:

力扣

2.3 queue的模拟实现

因为queue的接口中存在头删和尾插,因此使用vector来封装效率太低,故可以借助list来模拟实现queue,具体如下:

#include <iostream>
#include <vector>
#include <list>
#include <algorithm>
using namespace std;

namespace myspace
{

    template <class T>
    class queue
    {

    public:
        queue() {}
        void push(const T &x)
        {
            _c.push_back(x);
        }

        void pop()
        {
            _c.pop_front();
        }
        T &back()
        {
            return _c.back();
        }

        const T &back() const
        {
            return _c.back();
        }

        T &front()
        {
            return _c.front();
        }
        const T &front() const
        {
            return _c.front();
        }

        size_t size() const
        {
            return _c.size();
        }

        bool empty() const
        {
            return _c.empty();
        }

    private:
        list<T> _c;
    };

}

int main()
{
    myspace::queue<int> q;
    q.push(1);
    q.push(2);
    q.push(3);
    q.push(4);

    cout << q.front() << endl;
    q.pop();
    cout << q.front() << endl;
    cout << q.back() << endl;
    system("pause");
    return 0;
}

3.1 priority_queue的介绍和使用

        3.1 priority_queue的介绍

        https://cplusplus.com/reference/queue/priority_queue/

翻译:

1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。

2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。

3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。

4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭

代器访问,并支持以下操作:

empty():检测容器是否为空

size():返回容器中有效元素个数

front():返回容器中第一个元素的引用

push_back():在容器尾部插入元素

pop_back():删除容器尾部元素

5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。

6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

3.2 priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。

1. 默认情况下,priority_queue是大堆。

#include <iostream>
#include <vector>
#include <queue>
#include <functional>
#include <algorithm>
using namespace std;

void TestPriorityQueue()
{

    //默认是大堆
    vector<int> v{3, 2, 7, 6, 0, 4, 1, 9, 8, 5};
    priority_queue<int> q1;
    for (auto &e : v)
    {
        q1.push(e);
    }
    cout << q1.top() << endl;
    priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
    cout << q2.top() << endl;
}

int main()
{
    TestPriorityQueue();
    system("pause");
    return 0;
}

2. 如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
#include <queue>
class Date
{

public:
    Date(int year = 1900, int month = 1, int day = 1) : _year(year), _month(month), _day(day) {}

    bool operator<(const Date &d) const
    {
        return (_year < d._year) || (_year == d._year && _month < d._month) || (_year == d._year && _month == d._month && _day < d._day);
    }

    bool operator>(const Date &d) const
    {

        return (_year > d._year) || (_year == d._year && _month > d._month) || (_year == d._year && _month == d._month && _day > d._day);
    }

    friend ostream &operator<<(ostream &_cout, const Date &d);

private:
    int _year;
    int _month;
    int _day;
};

ostream &operator<<(ostream &_cout, const Date &d)
{

    _cout << d._year << " " << d._month << " " << d._day << endl;
    return _cout;
}

void TestPriority()
{
    // 大堆,需要用户在自定义类型中提供<的重载
    priority_queue<Date> q1;
    q1.push(Date(2019, 10, 19));
    q1.push(Date(2019, 10, 28));
    q1.push(Date(2018, 3, 4));
    q1.push(Date(2030, 2, 4));

    cout << q1.top() << endl;
    //小顶堆 需要用户的> 的重载
    priority_queue<Date, vector<Date>, greater<Date>> q2;

    q2.push(Date(2024, 2, 3));
    q2.push(Date(2033, 2, 3));
    q2.push(Date(2013, 4, 2));
    cout << q2.top() << endl;
}

int main()
{

    TestPriority();

    system("pause");
    return 0;
}

3.3 OJ中的使用

  数组中的第K 个最大的元素        力扣

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {

        priority_queue<int> pq;

        for(int i=0;i<nums.size();i++){
            pq.push(nums[i]);
        }

        int j=1;
        while(j<k){
            pq.pop();
            j++;
        }

        return pq.top();

        //新的方法计算
        // sort(nums.begin(),nums.end(),greater<int>());
        // return nums[k-1];

        
    }
};

3.4 priority_queue的模拟实现

通过对priority_queue的底层结构就是堆,因此此处只需对对进行通用的封装即可。

        

#pragma once

#include <iostream>
using namespace std;

#include <vector>
// priority_queue--->堆
namespace bite
{
	template<class T>
	struct less
	{
		bool operator()(const T& left, const T& right)
		{
			return left < right;
		}
	};

	template<class T>
	struct greater
	{
		bool operator()(const T& left, const T& right)
		{
			return left > right;
		}
	};

	template<class T, class Container = std::vector<T>, class Compare = less<T>>
	class priority_queue
	{
	public:
		// 创造空的优先级队列
		priority_queue() : c() {}

		template<class Iterator>
		priority_queue(Iterator first, Iterator last)
			: c(first, last)
		{
			// 将c中的元素调整成堆的结构
			int count = c.size();
			int root = ((count - 2) >> 1);
			for (; root >= 0; root--)
				AdjustDown(root);
		}

		void push(const T& data)
		{
			c.push_back(data);
			AdjustUP(c.size() - 1);
		}

		void pop()
		{
			if (empty())
				return;

			swap(c.front(), c.back());
			c.pop_back();
			AdjustDown(0);
		}

		size_t size()const
		{
			return c.size();
		}

		bool empty()const
		{
			return c.empty();
		}

		// 堆顶元素不允许修改,因为:堆顶元素修改可以会破坏堆的特性
		const T& top()const
		{
			return c.front();
		}
	private:
		// 向上调整
		void AdjustUP(int child)
		{
			int parent = ((child - 1) >> 1);
			while (child)
			{
				if (Compare()(c[parent], c[child]))
				{
					swap(c[child], c[parent]);
					child = parent;
					parent = ((child - 1) >> 1);
				}
				else
				{
					return;
				}
			}
		}

		// 向下调整
		void AdjustDown(int parent)
		{
			size_t child = parent * 2 + 1;
			while (child < c.size())
			{
				// 找以parent为根的较大的孩子
				if (child + 1 < c.size() && Compare()(c[child], c[child + 1]))
					child += 1;

				// 检测双亲是否满足情况
				if (Compare()(c[parent], c[child]))
				{
					swap(c[child], c[parent]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
					return;
			}
		}
	private:
		Container c;
	};
}

void TestQueuePriority()
{
	bite::priority_queue<int> q1;
	q1.push(5);
	q1.push(1);
	q1.push(4);
	q1.push(2);
	q1.push(3);
	q1.push(6);
	cout << q1.top() << endl;

	q1.pop();
	q1.pop();
	cout << q1.top() << endl;

	vector<int> v{ 5,1,4,2,3,6 };
	bite::priority_queue<int, vector<int>, bite::greater<int>> q2(v.begin(), v.end());
	cout << q2.top() << endl;

	q2.pop();
	q2.pop();
	cout << q2.top() << endl;
}

4. 容器适配器

4.1 什么是适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总 结),该种模式是将一个类的接口转换成客户希望的另外一个接口

        

4.2 STL标准库中stackqueue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:

4.3 deque的简单介绍(了解) 

4.3.1 deque的原理介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其整体连续以及随机访问的假象,落 在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:

 那deque是如何借助其迭代器维护其假想连续的结构呢

4.3.2 deque的缺陷

vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vectorlist,deque的应用并不多,而目前能看到的一个应用就是,STL用其作stackqueue的底层数据结构

4.4 为什么选择deque作为stackqueue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。

2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。 结合了deque的优点,而完美的避开了其缺陷。

4.5 STL标准库中对于stackqueue的模拟实现 

4.5.1 queue的模拟实现  

        

#include <iostream>
#include <vector>
#include <deque>
#include <algorithm>
using namespace std;

namespace myspace
{

    template <class T, class Con = deque<T>>

    class queue
    {

    public:
        queue() {}

        void push(const T &x)
        {
            _c.push_back(x);
        }

        void pop()
        {
            _c.pop_front();
        }

        T &front()
        {
            return _c.front();
        }

        const T &front() const
        {
            return _c.front();
        }

        T &back()
        {
            return _c.back();
        }

        const T &back() const
        {
            return _c.back();
        }

        size_t size() const
        {
            return _c.size();
        }

        bool empty() const
        {
            return _c.empty();
        }

    private:
        Con _c;
    };

}

void TestStack()
{

    myspace::queue<int> q1;
    q1.push(1);
    q1.push(2);
    q1.push(3);
    q1.push(4);

    q1.push(5);
    q1.push(6);
    cout << q1.front() << endl;
    cout << q1.back() << endl;
    q1.pop();
    cout << q1.empty() << endl;
}

int main()
{

    TestStack();

    system("pause");
    return 0;
}

 4.5.2 stack的模拟实现

#include <iostream>
#include <vector>
#include <deque>
#include <algorithm>
using namespace std;

namespace myspace
{
    template <class T, class Con = deque<T>>
    class stack
    {

    public:
        stack() {}
        void push(const T &x)
        {
            _c.push_back(x);
        }

        void pop()
        {
            _c.pop_back();
        }

        T &top()
        {
            return _c.back();
        }

        const T &top() const
        {
            return _c.top();
        }

        size_t size() const
        {
            return _c.size();
        }

        size_t empty() const
        {
            return _c.empty();
        }

    private:
        Con _c;
    };

}

void TestStack()
{

    myspace::stack<int> s;
    s.push(1);
    s.push(2);
    s.push(3);
    s.push(4);

    cout << s.top() << endl;
    s.pop();
    cout << s.top() << endl;
}

int main()
{
    TestStack();
    system("pause");
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/449613.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式学习第二十七天!(TCP并发模型)

TCP并发模型&#xff1a; 1. TCP多线程模型&#xff1a; 缺点&#xff1a;创建线程会带来资源开销&#xff0c;能够实现的并发量比较有限。 2. IO模型&#xff1a; 1. 阻塞IO&#xff1a; 没有数据到来时&#xff0c;可以让任务挂起&#xff0c;节省CPU资源开销&#xff0c;提…

51单片机基础篇系列-LED灯点亮代码部分

&#x1f308;个人主页: 会编辑的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” #include<reg52.h> //包含单片机内部寄存器 void main() //&#xff08;&#xff09;{P10xfe;//1111 1110while(1); // } 上面是第一个 LED实验 #include<reg52.h>…

解码人工智能的幽默:理解其背后的误解与挑战

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

爬虫之矛---JavaScript基石篇5<JS混淆问题(1)>

前言: 随着现代JavaScript应用程序的复杂性增加,源代码的安全性成为开发者和企业关注的焦点之一。为了保护知识产权和防止代码被逆向工程,开发者采用了各种技术手段,其中一种重要的方法是混淆。 正文: 如何调试JS? 以chrome浏览器为例,在开发者工具里面,可以通过在source…

MacOS - 在 Mac 上自定义“访达”边栏(快捷方式)

将文件添加到边栏&#xff1a;按住 Command 键&#xff0c;然后将文件拖到“个人收藏”部分。如果没有看到“个人收藏”部分&#xff0c;请选取“访达” > “设置” > “边栏”&#xff0c;然后在“个人收藏”部分中选择至少一个项目。 将文件添加到“访达”边栏仅会创建…

WPF(2)命令绑定

效果是&#xff1a;当TextBox控件的Text属性为空时show按钮不可用&#xff0c;有值时show按钮可用 项目结构 界面代码 <Window x:Class"WpfApp1.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://sc…

Qt - 信号和槽

目录 一、信号 二、槽 三、信号和槽的使用 (一) 连接信号和槽 (二) 自定义槽 (三) 通过 Qt Creator生成信号槽代码 (四) 自定义信号 四、带参数的信号和槽 五、信号与槽的断开 六、Qt4版本信号与槽的连接 (一) Qt4版本信号与槽连接的优缺点 一、信号 在 Qt 中&…

基于Python3的数据结构与算法 - 14 队列

目录 一、定义 1. 环形队列 2. 自定义队列 二、队列的内置模块 1. 双向队列 一、定义 队列&#xff08;Queue&#xff09;是一个数据集合&#xff0c;仅允许在列表的一端进行插入&#xff0c;另一端进行删除。进行插入的一端称为队尾&#xff08;rear&#xff09;&#…

前端基础篇-深入了解用 HTML 与 CSS 实现标题排版

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 HTML 与 CSS 概述 2.0 HTML - 标题排版 2.1 图片标签 2.2 标题标签 2.3 水平标签 2.4 实现标题排版 3.0 HTML - 标题样式(style 样式) 3.1 CSS 的引入方式 3.2…

2024最新版使用PyCharm搭建Anaconda

2024最新版使用PyCharm搭建Anaconda 因为pycharm自带的包不全&#xff0c;或者下载的时候比较慢&#xff0c;所以我们直接用anaconda的包&#xff0c;毕竟我们以后还会学到很多的包&#xff0c;不多说&#xff0c;直接开干&#xff01; 一、下载Pycharm、Anacoda pycharm中文网…

02_electron快速建立项目

一、安装 yarn 在此之前可以先安装 git&#xff1a;Git - Downloads (git-scm.com) 下面就是 yarn 安装的代码&#xff0c;在终端输入即可。 npm install --global yarn 检查是否安装成功&#xff1a; yarn --version 二、快速建立一个electron项目 其实在Getting Started - …

用chatgpt写论文重复率高吗?如何降低重复率?

ChatGPT写的论文重复率很低 ChatGPT写作是基于已有的语料库和文献进行训练的&#xff0c;因此在写作过程中会不可避免地引用或借鉴已有的研究成果和观点。同时&#xff0c;由于ChatGPT的表述方式和写作风格与人类存在一定的差异&#xff0c;也可能会导致论文与其他文章相似度高…

06多表查询

多表查询 多表查询&#xff0c;也称为关联查询&#xff0c;指两个或更多个表一起完成查询操作。前提条件&#xff1a;这些一起查询的表之间是有关系的&#xff08;一对一、一对多&#xff09;&#xff0c;它们之间一定是有关联字段&#xff0c;这个 关联字段可能建立了外键&am…

网络基础『 序列化与反序列化』

&#x1f52d;个人主页&#xff1a; 北 海 &#x1f6dc;所属专栏&#xff1a; Linux学习之旅、神奇的网络世界 &#x1f4bb;操作环境&#xff1a; CentOS 7.6 阿里云远程服务器 文章目录 &#x1f324;️前言&#x1f326;️正文1.协议的重要性2.什么是序列化与反序列化&…

安装配置Kafka

一个典型的Kafka集群中包含若干Producer&#xff08;可以是Web前端FET&#xff0c;或者是服务器日志等&#xff09;&#xff0c;若干Broker&#xff08;Kafka支持水平扩展&#xff0c;一般Broker数量越多&#xff0c;集群吞吐率越高&#xff09;&#xff0c;若干ConsumerGroup&…

wordpress免费主题下载

免费wordpress模板下载 简洁大气的文化艺术类wordpress模板&#xff0c;可以免费下载&#xff0c;实用易上手&#xff0c;新手也适合。 https://www.wpniu.com/themes/304.html 免费wordpress主题下载 高端大气上档次的wordpress主题&#xff0c;也可以是免费的&#xff0c;…

【机器学习】无监督学习算法之:层次聚类

层次聚类 1、引言2、层次聚类2.1 定义2.2 原理2.3 实现方式2.4 算法公式2.5 代码示例 3、总结 1、引言 小屌丝&#xff1a;鱼哥&#xff0c; 这周末过的滋润啊。 小鱼&#xff1a;… 每个周末都挺滋润的啊。 小屌丝&#xff1a;啊~ ~ 你这… 小鱼&#xff1a;周末加班&#xf…

Skywalking(9.7.0) 告警配置

图片被吞&#xff0c;来这里看吧&#xff1a;https://juejin.cn/post/7344567669893021736 过年前一天发版&#xff0c;大家高高兴兴准备回家过年去了。这时候老板说了一句&#xff0c;记得带上电脑&#xff0c;关注用户反馈。有紧急问题在高速上都得给我找个服务区改好。 但是…

矩阵乘法--Strassen算法

一、矩阵乘法 从中可以看出&#xff0c;计算两个矩阵的乘积&#xff0c;需要三个 for 循环&#xff0c;可以简单写出代码&#xff1a; for(int i1;i<m;i)for(int j1;j<p;j)for(int k1;k<n;k)c[i][j]a[i][k]*b[k][j]; 时间复杂度的分析&#xff1a;很明显&#xff0c;…

JDK环境变量配置-jre\bin、rt.jar、dt.jar、tools.jar

我们主要看下rt.jar、dt.jar、tools.jar的作用&#xff0c;rt.jar在​%JAVA_HOME%\jre\lib&#xff0c;dt.jar和tools.jar在%JAVA_HOME%\lib下。 rt.jar&#xff1a;Java基础类库&#xff0c;也就是Java doc里面看到的所有的类的class文件。 tools.jar&#xff1a;是系统用来编…