数据结构与算法第三套试卷小题

1.删除链表节点

**分析:**首先用指针变量q指向结点A的后继结点B,然后将结点B的值复制到结点A中,最后删除结点B。
在这里插入图片描述

2.时间复杂度的计算

**分析:**当涉及嵌套循环的时候,我们可以直接分析内层循环即可,看内层循环走了多少次
在这里插入图片描述

3.堆排序以及与其他排序的区别:

A
在这里插入图片描述
解析:
问的是空间复杂度,堆排序的空间复杂度为0(1);
时间复杂度为0(nlogn);
思路:
分为创建堆调整堆——>每调整一次的时间复杂度为0(logn),一共需要调整n-1

其他:
1.选择排序: 时间复杂度无论最好和最坏和平均都为0(n^2)
空间复杂度上与冒泡排序,插入排序,选择排序类似都为0(1)

2.快速排序: 时间复杂度为0(nlogn),最坏为0(n^2);空间复杂度为0(1)

3.归并排序: 时间复杂度均为0(nlogn),空间复杂度为0(n);

重点区别:
在这里插入图片描述
快速排序、归并排序和插入排序必须等到整个排序结束后才能够求出最小的10个数,而堆排序只需要在初始堆的基础上再进行10次筛选即可,每次筛选的时间复杂度为O(log2n)

4.快速排序的思路:

在这里插入图片描述
方法论:
从两头往中间搜索,右边找小,左边找大,右边先走
**1.第一步:**右边找到了10,左边找到了21,交换
**2.第二步:**在上面的位置上,右边继续向前,遇到了上一步的10,左右相遇,所以10的位置就是20的基准位,结束请添加图片描述

5.有向无向图和邻接表的转换

1:无向图的表头节点数,表节点数:顶点个数,边2;
2:有向图的表头节点数,表节点数:顶点个数,边
1;

6.强连通图

1.首先它的本质只是一个连通图,任意两个顶点之间都存在一条有向路径,即从任意一个顶点出发可以到达图中的任意其他顶点。
2.有向完全图一定是强连通,反之不一定;
3.最少边为n=顶点数

7.数据结构

1.数据结构的物理结构主要包括: 顺序存储结构,链式存储结构;
2.数据结构的逻辑结构: 线性结构,非线性结构(线性结构有线性表和栈,队列;非线性结构有树,图结构);
3.存储结构分为: 顺序存储,链式存储,索引存储,散列存储;
4.基本概念:
1.数据的基本单位是数据元素
2.数据元素最小单位为数据项
3.具有相同性质的数据元素的集合为数据对象
4.数据对象的集合为数据类型

5.存储结构和逻辑结构的关系:
存储结构则决定了数据在计算机内存中的实际存储方式
逻辑结构描述了数据元素之间的关系
数据结构是由其逻辑结构存储结构共同决定的;

8.算法的特性:

五大特性: 有穷性,确定性,可行性,输入,输出;

9.树在这里插入图片描述

1.深度: log2(n)+1 【n为顶点数】
**2.空指针域:**知道有多少叶子节点即可,然后利用n=n0+n1+n2,n2=n0-1;

10.图

出度: 顶点i在邻接矩阵第i行的所有元素之和为出度
入度: 顶点i在邻接矩阵第i列上所有元素之和为入度
邻接表上,顶点有n个,表头节点就有n个,至于表节点对应的是图某顶点的出度;

11.哈夫曼树

在这里插入图片描述
1.如何绘制: 两个最小生成树合并为一个新的树,然后重复以往过程;
2.情况: 哈夫曼树首先分为叶子节点和非叶子节点,叶子节点的度为1,非叶子节点的度为2;
所以度为1的节点一定为叶子节点,而哈夫曼树的构造后,叶子节点数一定为0——>所以度为1的节点数即为0;

12.二分查找最多次数:

在这里插入图片描述
log2n+1;

13.数据结构增删改查操作的时间复杂度

1.队列(Queue):
增加元素(enqueue):O(1)
删除元素(dequeue):O(1)
修改元素:队列通常不支持直接修改元素
查找元素:通常需要遍历整个队列,时间复杂度为O(n)

2.栈(Stack):
增加元素(push):O(1)
删除元素(pop):O(1)
修改元素:栈通常不支持直接修改元素
查找元素:通常需要遍历整个栈,时间复杂度为O(n)

3.树(Tree):
增加元素:O(log n) - 平衡二叉搜索树的情况下,最好为O(log n),最坏为O(n)
删除元素:O(log n) - 平衡二叉搜索树的情况下,最好为O(log n),最坏为O(n)
修改元素:可以视为删除+增加操作,时间复杂度与删除和增加相同
查找元素:O(log n) - 平衡二叉搜索树的情况下,最好为O(log n),最坏为O(n)

4.图(Graph):
增加元素(添加节点或边):O(1) - 在邻接表中添加节点或边的时间复杂度为O(1)
删除元素(删除节点或边):O(degree) - 对于邻接表,删除节点或边的时间复杂度取决于该节点的度数
修改元素:通常需要进行删除和增加操作,时间复杂度与删除和增加相关
查找元素:通常需要遍历整个图,时间复杂度为O(V+E),其中V为节点数,E为边数

14.求图的拓扑序列:

总结: 1.首先画出给定边集合的有向图,2.然后删除入度为0的节点,并去除它的出度边
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/448160.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小白优化Oracle的利器”sqltrpt.sql”脚本

SQL调优顾问是Oracle自带的一个功能强大的内部诊断工具,用于对性能不佳的SQL语句给出优化建议。但如果从命令行调用它比较麻烦,幸运的是,Oracle提供了一个方便的内置脚本“sqltrpt.sql”,简化了调用过程。 sqltrpt.sql脚本位于Or…

实践:qemu 运行 linux riscv with AIA(APLICIMSIC)

RISCV架构 Linux AIA支持 目标:在 Qemu 中运行一个支持 riscv aia 的 linux 翻译参考自:https://lwn.net/Articles/963231/ 文章日期:2024年2月22日,星期四(截至2024年3月,最新) 这个网站里在不…

EasyExcel导出自定义表格

谈到新技术,每个人都会有点恐惧,怕处理不好。确实,第一次使用新技术会遇到很多坑,这次使用 EasyExcel 这个新技术去做 excel 导出,还要给表格加样式,遇到不同的版本问题,遇到颜色加错了地方&…

JavaEE企业开发新技术2

目录 2.7 Field类的基本概念 文字性概念描述: Field类 2.8 Field的基本操作-1 2.9 Field的基本操作-2 分析: 2.10 Field 的综合练习 总结: 和equals的区别: 使用 比较 使用equals比较 2.7 Field类的基本概念 文字性…

OpenCV 图像的几何变换

一、图像缩放 1.API cv2.resize(src, dsize, fx0,fy0,interpolation cv2.INTER_LINEAR) 参数: ①src :输入图像 ②dsize:绝对尺寸 ③fx,fy:相对尺寸 ④interpolation:插值方法 2.代码演示 import cv2 …

前端报错404,nginx正常、gateway没有转发请求

问题描述:前端报错 404 Not Found 原因:nacos中对应服务没有上线,下线后,可以启动本地服务,然后在测试上调试代码。!! 记住重启对应服务,也不会自动上线。

JVM的内存区域

JVM内存区域最粗略的划分可以分为堆和栈,当然,按照虚拟机规范,可以划分为以下几个、区域 Java虚拟机运行时数据区 JVM内存分为线程私有区和线程共享区,其中方法区和堆是线程共享区,虚拟机栈、本地方法栈和程序计数器是…

植物病害识别:YOLO水稻病害识别/分类数据集(2000多张,2个类别,yolo标注)

YOLO水稻病害识别/分类数据集,包含疾病和正常2类,共2000多张图像,yolo标注完整,可直接训练。 适用于CV项目,毕设,科研,实验等 需要此数据集或其他任何数据集请私信

floodfill算法题目

前言 大家好,我是jiantaoyab,在下面的题目中慢慢体会floodFill算法,虽然是新的算法,但是用的思想和前面的文章几乎一样,代码格式也几乎一样,但不要去背代码 图像渲染 https://leetcode.cn/problems/flood…

事物的传播属性

事务传播属性是Spring框架在处理事务时的一个重要概念,它定义了在事务方法被另一个事务方法调用时,如何处理事务边界的行为。这些属性是通过Spring的Transactional注解中的propagation属性来设置的。下面是几个常见的Spring事务传播属性: *RE…

生成式 AI:使用 Pytorch 通过 GAN 生成合成数据

导 读 生成对抗网络(GAN)因其生成图像的能力而变得非常受欢迎,而语言模型(例如 ChatGPT)在各个领域的使用也越来越多。这些 GAN 模型可以说是人工智能/机器学习目前主流的原因; 因为它向每个人&#xff0…

RK3568 xhci主控挂死问题

串口日志 rootjenet:~# [18694.115430] xhci-hcd xhci-hcd.1.auto: xHCI host not responding to stop endpoint command. [18694.125667] xhci-hcd xhci-hcd.1.auto: xHCI host controller not responding, assume dead [18694.125977] xhci-hcd xhci-hcd.1.auto: HC died; c…

微软模拟飞行器回放功能

参考b站up主,欢迎大家去关注:https://www.bilibili.com/video/BV1Z34y1P7zz/?spm_id_from333.880.my_history.page.click&vd_source4e0b40493e2382633fab2ddc1bb1d9cc 下载网址:https://flightsim.to/file/8163/flight-recorder 坠毁检…

嘿!AI 编码新玩法上线!

随着 AI 智能浪潮到来,AI 编码助手成为越来越多开发者的必备工具,将开发者从繁重的编码工作中解放出来,极大地提高了编程效率,帮助开发者实现更快、更好的代码编写。 通义灵码正是这样一款基于阿里云通义代码大模型打造的智能编码…

如何保证消息的顺序性

先看看顺序会错乱的场景:RabbitMQ:一个 queue,多个 consumer,这不明显乱了: 解决方案:

代码背后的女性:突破性别壁垒的技术先驱

个人主页:17_Kevin-CSDN博客 收录专栏:《程序人生》 引言 在计算机科学的历史长河中,有许多杰出的女性为这个领域的发展做出了重要贡献。她们不仅在技术上取得了卓越成就,还打破了性别壁垒,为后来的女性树立了榜样。今…

22 Dytechlab Cup 2022C. Ela and Crickets(思维、找规律、模拟)

思路就是找规律 可以发现,当拐点在角落时的情况和不在角落的情况是不同 当拐点在角落时,只有目标点的横纵坐标其中的一个和它相同时,这时才可能到达。 否则,我们就简单的例子可以看一下,当一个 2 ∗ 2 2*2 2∗2的矩阵的…

伪分布HBase的安装与部署

1.实训目标 (1)熟悉掌握使用在Linux下安装伪分布式HBase。 (2)熟悉掌握使用在HBase伪分布式下使用自带Zookeeper。 2.实训环境 环境 版本 说明 Windows 10系统 64位 操作电脑配置 VMware 15 用于搭建所需虚拟机Linux系统 …

PostgreSQL容器安装

docker中的centos7中安装 选择对应的版本然后在容器中的centos7中执行下面命令 但是启动容器的时候需要注意 开启端口映射开启特权模式启动init进程 docker run -itd --name centos-postgresql -p 5433:5432 --privilegedtrue centos:centos7 /usr/sbin/init 启动然后进入后先…

ARMv8/ARMv9架构下特权程序之间的跳转模型与系统启动探析

文章目录 背景1、前言小结: 2、4个特权等级/4个安全状态之间的跳转模型小结: 3、启动时镜像之间的跳转模型小结: 4、runtime程序之间的跳转模型小结: 推荐 背景 ARMv8和ARMv9架构是ARM公司推出的先进处理器架构,被广泛…