官方实现
https://github.com/KinWaiCheuk/nnAudio;
论文实现:
nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks;
以下先对文章解读:
abstract
在本文中,我们提出了nnAudio,这是一种新的基于神经网络的音频处理框架,具有图形处理单元(GPU)支持,利用1D卷积神经网络执行时域到频域转换。由于速度快,它允许实时提取光谱图,而无需在磁盘上存储任何光谱图。此外,这种方法还允许在波形到谱图转换层上进行反向传播,因此,转换过程可以进行训练,从而进一步优化神经网络所训练的特定任务的波形到谱线图转换
。
所有谱线图实现都按输入长度的线性时间的Big-O缩放。然而,nnAudio利用了PyTorch的一维卷积神经网络的计算统一设备架构(CUDA),其短时傅里叶变换(STFT)、梅尔谱图和常数Q变换(CQT)实现比仅使用中央处理单元(CPU)的其他实现快了一个数量级。我们使用NVIDIA GPU在三台不同的机器上测试了我们的框架,考虑到录音长度相同,我们的框架将谱图提取时间从几秒(使用流行的python库librosa)减少到几毫秒。当将nnAudio应用于可变输入音频长度时,使用librosa从MusicNet数据集中提取具有不同参数的34种谱图类型平均需要11.5小时。nnAudio平均需要2.8小时,速度仍然是librosa的四倍。我们提出的框架在处理速度方面也优于现有的GPU处理库,如Kapre和Torchaudio。
1. introduction
自20世纪80年代以来,光谱作为音频信号的时频表示,一直被用作神经网络模型的输入[1-3]。不同类型的光谱图针对不同的应用进行定制。例如,Mel频谱图和Mel频率倒谱系数(MFCC)是为语音相关应用设计的[4,5],而常数Q变换最适合音乐相关应用[6,7]。尽管最近在音频领域的端到端学习方面取得了进展,如WaveNet[8]和SampleCNN[9],这使得对原始音频数据进行模型训练成为可能,但许多最近的出版物仍然使用声谱图作为各种应用的模型的输入[10]。这些应用包括语音识别[11,12]、语音情感检测[13]、语音到语音翻译[14]、语音增强[15]、语音分离[16]、歌声转换[17]、音乐标记[18]、覆盖检测[19]、旋律提取[20]和复调音乐转录[21]。在原始音频数据上训练端到端模型的一个缺点是训练时间较长。
本文的主要贡献是开发了一种基于GPU的音频处理框架,该框架直接集成到神经网络中并利用了神经网络的力量。这提供了以下好处:
1)使用动态时频转换层进行端到端神经网络训练(即,可以直接使用原始波形作为神经网络的输入)。
2) 与ibrosa[23]等传统音频处理方法相比,处理速度明显更快。
3) 基于可以在GPU上运行的神经网络的CQT算法(在撰写本文时,没有可以在GPU中运行的基于神经网络的CQT算法。)
4)可训练的傅立叶、梅尔和CQT内核,可以根据手头的问题自动调整
。
比较(A):现有(慢速)方法[32-40]和(b):我们提出的(如图11a所示快得多)基于神经网络的音频处理框架(nnAudio)的流程图。我们提出的神经网络以黄色突出显示。我们现在可以直接将波形前馈到神经网络,而不是对波形进行预处理,并且可以在训练过程中动态生成频谱图。红色箭头表示反向传播ŞL可以走多远,这允许在训练期间对初始化的内核进行微调,从而产生专门定制的新表示。
在下面的小节中,我们将简要总结离散傅立叶变换(DFT)的数学原理。
然后,我们将讨论如何初始化神经网络来执行第II节中的STFT、Mel谱图和常数Q变换(CQT)。
在第四节中,我们比较了nnAudio与流行的python信号处理库librosa的速度和输出。最后,我们介绍了我们库的潜在应用。