计算机设计大赛 目标检测-行人车辆检测流量计数

文章目录

  • 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

前言

🔥 优质竞赛项目系列,今天要分享的是

行人车辆目标检测计数系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程



    import cv2
    import numpy as np
    import random


    def load_images(dirname, amout = 9999):
        img_list = []
        file = open(dirname)
        img_name = file.readline()
        while img_name != '':  # 文件尾
            img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')
            img_list.append(cv2.imread(img_name))
            img_name = file.readline()
            amout -= 1
            if amout <= 0: # 控制读取图片的数量
                break
        return img_list


    # 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本
    def sample_neg(full_neg_lst, neg_list, size):
        random.seed(1)
        width, height = size[1], size[0]
        for i in range(len(full_neg_lst)):
            for j in range(10):
                y = int(random.random() * (len(full_neg_lst[i]) - height))
                x = int(random.random() * (len(full_neg_lst[i][0]) - width))
                neg_list.append(full_neg_lst[i][y:y + height, x:x + width])
        return neg_list


    # wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsize
    def computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):
        hog = cv2.HOGDescriptor()
        # hog.winSize = wsize
        for i in range(len(img_lst)):
            if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:
                roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \
                      (img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]
                gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
                gradient_lst.append(hog.compute(gray))
        # return gradient_lst


    def get_svm_detector(svm):
        sv = svm.getSupportVectors()
        rho, _, _ = svm.getDecisionFunction(0)
        sv = np.transpose(sv)
        return np.append(sv, [[-rho]], 0)


    # 主程序
    # 第一步:计算HOG特征
    neg_list = []
    pos_list = []
    gradient_lst = []
    labels = []
    hard_neg_list = []
    svm = cv2.ml.SVM_create()
    pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')
    full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')
    sample_neg(full_neg_lst, neg_list, [128, 64])
    print(len(neg_list))
    computeHOGs(pos_list, gradient_lst)
    [labels.append(+1) for _ in range(len(pos_list))]
    computeHOGs(neg_list, gradient_lst)
    [labels.append(-1) for _ in range(len(neg_list))]
     
    # 第二步:训练SVM
    svm.setCoef0(0)
    svm.setCoef0(0.0)
    svm.setDegree(3)
    criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)
    svm.setTermCriteria(criteria)
    svm.setGamma(0)
    svm.setKernel(cv2.ml.SVM_LINEAR)
    svm.setNu(0.5)
    svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?
    svm.setC(0.01)  # From paper, soft classifier
    svm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression task
    svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))
     
    # 第三步:加入识别错误的样本,进行第二轮训练
    # 参考 http://masikkk.com/article/SVM-HOG-HardExample/
    hog = cv2.HOGDescriptor()
    hard_neg_list.clear()
    hog.setSVMDetector(get_svm_detector(svm))
    for i in range(len(full_neg_lst)):
        rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)
        for (x,y,w,h) in rects:
            hardExample = full_neg_lst[i][y:y+h, x:x+w]
            hard_neg_list.append(cv2.resize(hardExample,(64,128)))
    computeHOGs(hard_neg_list, gradient_lst)
    [labels.append(-1) for _ in range(len(hard_neg_list))]
    svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))


    # 第四步:保存训练结果
    hog.setSVMDetector(get_svm_detector(svm))
    hog.save('myHogDector.bin')


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/446949.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

服务器-->网站制作-->接口开发,一篇文章一条龙服务(2)

作者&#xff1a;q: 1416279170v: lyj_txd前述&#xff1a;本人非专业&#xff0c;兴趣爱好自学自研&#xff0c;很多没有说清楚的地方见谅&#xff0c;欢迎一起讨论的小伙伴~ 上期回顾&#xff0c;了解 服务器&#xff0c;网站制作&#xff0c;接口开发之见的关系&#xff0c…

【C#语言入门】17. 事件详解(上)

【C#语言入门】17. 事件详解&#xff08;上&#xff09; 一、初步了解事件 定义&#xff1a;单词Event&#xff0c;译为“事件” 通顺的解释就是**“能够发生的什么事情”**&#xff0c;例如&#xff0c;“苹果”不能发生&#xff0c;但是“公司上市”这件事能发生。在C#中事…

Android Gradle 开发与应用 (五) : 基于Gradle 8.2,创建Gradle插件

1. 前言 本文介绍在Android中&#xff0c;如何基于Gradle 8.2&#xff0c;创建Gradle插件。 1.1 本文环境 Android Studio 版本 : Android Studio Hedgehog | 2023.1.1Gralde版本 : gradle 8.2 使用 Android Gradle 插件升级助理 Android Gradle 插件版本说明 1.2 为什么要写…

机器学习(五) -- 监督学习(1) -- 线性回归

系列文章目录 机器学习&#xff08;一&#xff09; -- 概述 机器学习&#xff08;二&#xff09; -- 数据预处理&#xff08;1-3&#xff09; 机器学习&#xff08;三&#xff09; -- 特征工程&#xff08;1-2&#xff09; 机器学习&#xff08;四&#xff09; -- 模型评估…

批量提取PDF指定区域内容到 Excel 以及根据PDF里面第一页的标题来批量重命名-附思路和代码实现

首先说明下&#xff0c;PDF需要是电子版本的&#xff0c;不能是图片或者无法选中的那种。 需求1&#xff1a;假如我有一批数量比较多的同样格式的PDF电子文档&#xff0c;需要把特定多个区域的数字或者文字提取出来 需求2&#xff1a;我有一批PDF文档&#xff0c;但是文件的名…

使用VBA快速梳理多层级族谱(组织架构)

实例需求&#xff1a;族谱&#xff08;或者公司组织架构等&#xff09;都是典型的带有层级关系数据&#xff0c;例如下图中左侧表格所示。 A列为层级&#xff08;准确的讲是B列成员的层级&#xff09;&#xff0c;从一开始递增B列和C列为成员直接的父&#xff08;/母&#xff…

美术馆预约小程序|基于微信小程序的美术馆预约平台设计与实现(源码+数据库+文档)

美术馆预约小程序目录 目录 基于微信小程序的美术馆预约平台设计与实现 一、前言 二、系统设计 三、系统功能设计 1、用户信息管理 2、展品信息管理 3、美术馆信息管理 4、论坛信息管理 四、数据库设计 五、核心代码 七、最新计算机毕设选题推荐 八、源码获取&am…

谷歌BigQuery推出新玩意儿,向量搜索登场啦!

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

AIGC: 2 语音转换新纪元-Whisper技术在全球客服领域的创新运用

背景 现实世界&#xff0c;人跟人的沟通相当一部分是语音沟通&#xff0c;比如打电话&#xff0c;聊天中发送语音消息。 而在程序的世界&#xff0c;大部分以处理字符串为主。 所以&#xff0c;把语音转换成文字就成为了编程世界非常普遍的需求。 Whisper 是由 OpenAI 开发…

【神经网络与深度学习】深度神经网络(DNN)

概述 深度神经网络&#xff08;Deep Neural Networks&#xff0c;DNN&#xff09;是一种由多个隐藏层组成的神经网络模型。每个隐藏层由多个神经元组成&#xff0c;这些神经元通过权重和激活函数进行信息传递和计算。 深度神经网络通过多层的非线性变换&#xff0c;可以学习到…

vue中实现3d词云效果(已封装组件)

<!--* Description: 词云组件 页面* Date: 2024/3/10 23:39 --> <template><div:style"{display: flex,justifyContent: center,border: 1px solid red,}"><svg:width"width":height"height"mousemove"listener($even…

Linux动态追踪——ftrace

目录 摘要 1 初识 1.1 tracefs 1.2 文件描述 2 函数跟踪 2.1 函数的调用栈 2.2 函数调用栈 2.3 函数的子调用 3 事件跟踪 4 简化命令行工具 5 总结 摘要 Linux下有多种动态追踪的机制&#xff0c;常用的有 ftrace、perf、eBPF 等&#xff0c;每种机制适应于不同的场…

ES分页查询的最佳实践:三种方案

Elasticsearch&#xff08;ES&#xff09;中进行分页查询时&#xff0c;最佳实践取决于具体的使用场景和需求。 以下是对每种分页方法的简要分析以及它们适用的情况&#xff1a; 1. From Size 最常见且直观的方法&#xff0c;通过from参数指定跳过多少条记录&#xff0c;si…

Autosar Crypto Driver学习笔记(一)

文章目录 Crypto DriverPre-ConfigurationCryptographic capabilities加密能力Available Keys可用密钥 General BehaviorNormal OperationFunctional RequirementsSynchronous Job ProcessingAsynchronous Job Processing Design NotesPriority-dependent Job Queue基于优先级的…

docker安装jenkins并实现CICD流程

docker安装jenkins并实现CICD流程 本文目录 docker安装jenkins并实现CICD流程安装命令初始化设置更新jenkins及插件更新jenkins版本更新插件 创建第一个任务修改配置插件更新中心时区设置 安装命令 官方安装参考&#xff1a;https://www.jenkins.io/zh/doc/book/installing/ …

Docker安装tomcat

目录 一、安装Docker 二、Docker安装tomcat 三、安装tomcat 一、安装Docker 安装docker阅读 Docker整理之安装(1)-CSDN博客https://blog.csdn.net/ywanju/article/details/135442406 二、Docker安装tomcat 本案例安装的tomcat最新版本 搜(dockerhub搜索镜像版本) 拉(拉…

十二要素应用: 云原生应用最佳实践

本文介绍了开发部署云原生应用的一套最佳实践&#xff0c;通过这套最佳实践&#xff0c;可以最大限度利用云原生的能力&#xff0c;创建灵活、健壮、易管理的现代云原生应用程序。原文: The Twelve-Factor App: Best Practices for Cloud-Native Applications[1] 导言 软件如今…

爬虫与DataFrame对象小小结合

import pandas as pd import requests from lxml import etree #数据请求 url"https://www.maigoo.com/brand/list_1715.html" headers{User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.5735.289 Safari…

【实验报告】C语言实现猜单词的小游戏

之前帮别人写的一个简单的报告&#xff0c;无偿分享给大家~代码在后面&#xff0c;有一些图片出于懒惰没有上传。比较简单&#xff0c;喜欢的话关注我~&#xff0c;请勿商用~ 1 系统功能模块结构图 该程序主要思路&#xff1a; 头文件设计&#xff0c;存储结构设计&#xff0…

Jmeter+Ant+Git/SVN+Jenkins实现持续集成接口测试,一文精通(一)

前言 Jmeter&#xff0c;Postman一些基本大家相比都懂。那么真实在项目中去使用&#xff0c;又是如何使用的呢&#xff1f;本文将一文详解jmeter接口测试 一、接口测试分类 二、目前接口架构设计 三、市面上的接口测试工具 四、Jmeter简介&#xff0c;安装&#xff0c;环境…