【动态规划】代码随想录算法训练营第四十四天 |完全背包,518. 零钱兑换 II , 377. 组合总和 Ⅳ (待补充)

完全背包理论基础

完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。

在下面的讲解中,我依然举这个例子:

背包最大重量为4。

物品为:

重量

价值

物品0

1

15

物品1

3

20

物品2

4

30

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

关于01背包我如下两篇已经进行深入分析了:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

首先再回顾一下01背包的核心代码

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

至于为什么,我在动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)中也做了讲解。

dp状态图如下:

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?

难道就不能遍历背包容量在外层,遍历物品在内层?

看过这两篇的话:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。

先遍历背包在遍历物品,代码如下:

// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
    cout << endl;
}

完整的C++测试代码如下:

// 先遍历物品,在遍历背包
void test_CompletePack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_CompletePack();
}

// 先遍历背包,再遍历物品
void test_CompletePack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    vector<int> dp(bagWeight + 1, 0);

    for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
        for(int i = 0; i < weight.size(); i++) { // 遍历物品
            if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_CompletePack();
}

本题力扣上没有原题,大家可以去卡码网第52题(opens new window)去练习,题意是一样的,C++代码如下:

#include <iostream>
#include <vector>
using namespace std;

// 先遍历背包,再遍历物品
void test_CompletePack(vector<int> weight, vector<int> value, int bagWeight) {

    vector<int> dp(bagWeight + 1, 0);

    for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
        for(int i = 0; i < weight.size(); i++) { // 遍历物品
            if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    int N, V;
    cin >> N >> V;
    vector<int> weight;
    vector<int> value;
    for (int i = 0; i < N; i++) {
        int w;
        int v;
        cin >> w >> v;
        weight.push_back(w);
        value.push_back(v);
    }
    test_CompletePack(weight, value, V);
    return 0;
}

#总结

细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!

但如果题目稍稍有点变化,就会体现在遍历顺序上。

如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。

这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!

别急,下一篇就是了!

最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么? 这个简单的完全背包问题,估计就可以难住不少候选人了。

518.零钱兑换II

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

4、视频链接:

动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili

class Solution {
    public int change(int amount, int[] coins) {
        //递推表达式
        int[] dp = new int[amount + 1];
        //初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
        dp[0] = 1;
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
}

377. 组合总和 Ⅳ

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

  • nums = [1, 2, 3]
  • target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

4、视频链接:

动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV_哔哩哔哩_bilibili

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 0; i <= target; i++) {
            for (int j = 0; j < nums.length; j++) {
                if (i >= nums[j]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/446428.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

仿牛客网项目---项目总结

本篇文章是对整个项目的一个总结。下面这张图要好好理解。 整个项目都是构建在SpringBoot之上的&#xff0c;所以把它画到最底下&#xff0c;其它技术依托在springboot之上。但是springboot并不是技术的核心&#xff0c;而只是起到了一个辅助的作用&#xff0c;它的作用仅仅是降…

后端项目访问不了

问题&#xff1a; 后端启动不了&#xff0c;无法访问网站 原因&#xff1a; 1.防火墙没有关 2.有缓存 3、项目没有启动 4、docker没有启动 解决&#xff1a; 先查看进程&#xff1a;docker ps&#xff0c;必须有三个 详细查看&#xff1a;docker ps -a exited代表没有开启…

AI相关的实用工具分享

AI实用工具大赏&#xff1a;赋能科研与生活&#xff0c;探索AI的无限可能 前言 在数字化浪潮汹涌而至的今天&#xff0c;人工智能&#xff08;AI&#xff09;已经渗透到我们生活的方方面面&#xff0c;无论是工作还是生活&#xff0c;都在悄然发生改变。AI的崛起不仅为我们带…

怎么看待Groq

用眼睛看。 就是字面上的意思用眼睛看。 我属于第一波玩到的,先给大家一个直观的印象,Groq到底有多快。 目前Groq只能选Llama的70b,和Mixtral的MoE,那我选7*8的这个MoE模型来实验。 这么好些字大概花了不到1秒,流式响应,其实是不是流式已经没那么重要了 ,然后看每秒Toke…

dbeaver 数据库连接工具使用教程

dbeaver是一款很强大的数据库连接工具&#xff0c;本人之前使用的是navicat&#xff0c;挺好用的&#xff0c;只不过每次激活都要整半天&#xff0c;然后看到了dbeaver这款工具&#xff0c;本着尝试的心态&#xff0c;体验了下&#xff0c;真香。 下面来配置dbeaver 1.下载安…

软件测试相关内容第三弹--软件测试基础

写在前&#xff1a;在前篇的两篇博客介绍中我们主要学习软件测试的相关概念&#xff0c;对软件测试进行了初步的了解&#xff0c;本篇博客将进一步进行学习。重点内容包括&#xff1a;软件测试的生命周期、如何描述一个bug、如何定义bug的级别、bug的生命周期以及在实际工作中如…

ElasticSearch学习篇10_Lucene数据存储之BKD动态磁盘树

前言 基础的数据结构如二叉树衍生的的平衡二叉搜索树通过左旋右旋调整树的平衡维护数据&#xff0c;靠着二分算法能满足一维度数据的logN时间复杂度的近似搜索。对于大规模多维度数据近似搜索&#xff0c;Lucene采用一种BKD结构&#xff0c;该结构能很好的空间利用率和性能。 …

系统分析与设计(一)

我们有这么多各式各样的工具,互联网给我们带来了这么多用户和数据,这是好事也有副作用。 世界上能访问用户数据,并根据数据做分析和改进的公司,大概Google是其中翘楚,这种 data-centric 的做法做过了头,也有悲剧发生: Douglas Bowman 曾经是Google 的视觉设计主管,2009年的一天…

VUE_自适应布局lib-flexible+postcss-pxtorem、lib-flexible + postcss-px2rem,nuxt页面自适配

lib-flexible postcss-pxtorem适配 我采用的是flexable.js和postcss-pxtorem。我一开始用的是postcss-px2rem后来发现和nuxt引入公共css的时候发生了冲突所以改用了postcss-pxtorem。 安装依赖 npm i lib-flexible -S npm install postcss-pxtorem --save 1、lib-flexible.…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:动态属性设置)

动态设置组件的属性&#xff0c;支持开发者在属性设置时使用if/else语法&#xff0c;且根据需要使用多态样式设置属性。 说明&#xff1a; 从API Version 11开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 attributeModifier attributeMo…

Mint_21.3 drawing-area和goocanvas的FB笔记(六)

FreeBASIC gfx 基本 graphics 绘图 一、旧故事 DOS时代PC技术将各类硬插卡限制在 640K到1MB的空间范围内&#xff0c;BIOS负责在相关位置写读测试卡的存在&#xff0c;那时期的Color Video在0xB800&#xff0c;Monochrome Video在0xB000&#xff0c;这是显卡的内存地址&#…

算法学习之动态规划DP——背包问题

一、01背包问题 &#xff08;一&#xff09;题目 有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。 第i件物品的体积是 vi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输出最大价值…

前后端交互理解 简易表白墙(servlet)

前后端交互理解 简易表白墙&#xff08;servlet&#xff09; 文章目录 前后端交互理解 简易表白墙&#xff08;servlet&#xff09;后端核心内容前后端交互接口约定后端代码展示 上期介绍过 Servlet API &#xff0c;本篇文章目的是借助 servlet 做出一个完整的网站。在一个网站…

51单片机基础篇系列-人人都能学会单片机

&#x1f308;个人主页: 会编程的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” 什么是单片机 在一片集成电路芯片上集成计算机所有基 本部分&#xff08;中央处理器CPU、存储器RAM、ROM、 定时计数器T/C&#xff0c;输入输出接口IO、中断系 统&#xff09;都集成…

【UVM_phase objection_2024.03.08

phase 棕色&#xff1a;function phase 不消耗仿真时间 绿色&#xff1a;task phase 消耗仿真时间 run_phase与右边的phase并行执行&#xff0c;右边的phase&#xff08;run_time phase&#xff09;依次执行&#xff1a; List itemreset_phase对DUT进行复位&#xff0c;初始…

Elastic Stack--07--JavaAPI----文档(新增 、修改 、 查询 、 删除)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 JavaAPI-文档1.新增 Insert2.修改 Update3.查询 Get4.删除 Delete5.批量操作 BulkRequest批量新增批量删除 高级查询1.查询所有索引数据2.条件查询3.分页查询4.查询…

代码随想录算法训练营Day39 || leetCode 762.不同路径 || 63. 不同路径 II

62.不同路径 每一位的结果等于上方与左侧结果和 class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m,vector(n,0));for (int i 0; i < m; i) dp[i][0] 1;for (int j 0; j < n; j) dp[0][j] 1;for (int i 1; i < m; …

基于raft的kvDB

1 raft共识算法 raft是强leader模型&#xff0c;通过选举leader来实现一致性&#xff0c;leader拥有完全的能力来管理复制日志。leader从客户端获取日志条目&#xff0c;复制到其他的服务器中&#xff0c;告诉他们什么时候应用这个日志到状态机是安全的。 leader这个角色简化…

实现“ 字体逐渐展现 ”程序

本期介绍&#x1f356; 主要介绍&#xff1a;如何实现在屏幕上从两边向中间逐渐打印字符串。 题目&#xff1a;编写字体逐渐展现程序&#xff0c;功能是&#xff1a;多个字符从两端向中逐渐间显现&#xff0c;直到全部显示为止。举个例子&#xff0c;要逐渐显示“hello world ”…

MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly Detection

目录 一、问题与思路1.1 现存问题1.2 解决思路 二、模型与方法2.1 模型概览2.2 Encoder and decoder2.3 门控存储器模块2.3.1 门控存储器更新阶段2.3.2 查询更新阶段2.3.3 损失函数2.3.4 初始化内存项2.3.5 异常评分2.3.6 阈值设定 三、实验与分析3.1 模型结果3.2 消融实验3.3 …