【动态规划】【前缀和】【和式变换】100216. K 个不相交子数组的最大能量值

本文涉及知识点

动态规划汇总
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

LeetCode 100216. K 个不相交子数组的最大能量值

给你一个长度为 n 下标从 0 开始的整数数组 nums 和一个 正奇数 整数 k 。
x 个子数组的能量值定义为 strength = sum[1] * x - sum[2] * (x - 1) + sum[3] * (x - 2) - sum[4] * (x - 3) + … + sum[x] * 1 ,其中 sum[i] 是第 i 个子数组的和。更正式的,能量值是满足 1 <= i <= x 的所有 i 对应的 (-1)i+1 * sum[i] * (x - i + 1) 之和。
你需要在 nums 中选择 k 个 不相交子数组 ,使得 能量值最大 。
请你返回可以得到的 最大能量值 。
注意,选出来的所有子数组 不 需要覆盖整个数组。
示例 1:
输入:nums = [1,2,3,-1,2], k = 3
输出:22
解释:选择 3 个子数组的最好方式是选择:nums[0…2] ,nums[3…3] 和 nums[4…4] 。能量值为 (1 + 2 + 3) * 3 - (-1) * 2 + 2 * 1 = 22 。
示例 2:
输入:nums = [12,-2,-2,-2,-2], k = 5
输出:64
解释:唯一一种选 5 个不相交子数组的方案是:nums[0…0] ,nums[1…1] ,nums[2…2] ,nums[3…3] 和 nums[4…4] 。能量值为 12 * 5 - (-2) * 4 + (-2) * 3 - (-2) * 2 + (-2) * 1 = 64 。
示例 3:
输入:nums = [-1,-2,-3], k = 1
输出:-1
解释:选择 1 个子数组的最优方案是:nums[0…0] 。能量值为 -1 。

提示:
1 <= n <= 104
-109 <= nums[i] <= 109
1 <= k <= n
1 <= n * k <= 106
k 是奇数。

动态规划

动态规划的状态表示

iK ∈ \in [0,k)
pre[j]表示从nums[0…j)选择前iK-1个子数组组成的表达式的最大和。最后一个子数组以nums[j-1]结尾。
dp[j]表示从nums[0…j)选择前iK个子数组组成的表达式的最大和。最后一个子数组以nums[j-1]结尾。

利用和式变换简化动态规划的转移方程

假定第iK个子数组为nums[i…j],maxK1[j] = M a x x : 0 j \Large Max_{x:0}^{j} Maxx:0jpre[j]。
如果iK是偶数:
d p [ j ] = M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] + S u m [ 0... j ] − S u m [ 0... i − 1 ] ) dp[j] = Max_{i:1}^{j} (MaxmaxK1[i-1] + Sum[0...j]- Sum[0...i-1]) dp[j]=Maxi:1j(MaxmaxK1[i1]+Sum[0...j]Sum[0...i1]) → M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] − S u m [ 0... i − 1 ] ) + S u m [ 0... j ] \rightarrow Max_{i:1}^{j} (MaxmaxK1[i-1] - Sum[0...i-1])+ Sum[0...j] Maxi:1j(MaxmaxK1[i1]Sum[0...i1])+Sum[0...j]
令 m a x 1 ( j ) = M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] − S u m [ 0... i − 1 ] ) 令max1(j) = Max_{i:1}^{j} (MaxmaxK1[i-1] - Sum[0...i-1]) max1(j)=Maxi:1j(MaxmaxK1[i1]Sum[0...i1])
一个式子包括两个式子,分别用前缀和优化性质。
显然max1(j+1) = max( max1(j),MaxmaxK1[j] - Sum[0…j])
这是前缀和的基础。
如果iK是偶数:
d p [ j ] = M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] + S u m [ 0... i − 1 ] ) − S u m [ 0... j ] dp[j] = \Large Max_{i:1}^{j} (MaxmaxK1[i-1] + Sum[0...i-1])- Sum[0...j] dp[j]=Maxi:1j(MaxmaxK1[i1]+Sum[0...i1])Sum[0...j]

动态规划的初始值

pre全部为0。

动态规划的填表顺序

ik从0到iK-1,j从1到n。

特例

由于 k <= n,故一定能拆分成k组,前iK组的和一定大于等于 -1013 ,我们用-1014表示非法。

代码

核心代码

class Solution {
public:
	long long maximumStrength(vector<int>& nums, int k) {
		m_c = nums.size();
		vector<long long> pre(m_c+1);
		for (int iK = 0; iK < k; iK++)
		{
			vector<long long> dp(m_c + 1, -1E14);
			if (1 & iK)
			{
				Odd(dp, pre, nums,k-iK);
			}
			else
			{
				Even(dp, pre, nums, k - iK);
			}
			pre.swap(dp);
		}
		return *std::max_element(pre.begin(), pre.end());
	}
	void Odd(vector<long long>& dp, const vector<long long>& pre,const vector<int>& nums,const int x )
	{//奇数
		long long maxPre = -1E14,llMax = -1E14,llSum=0;
		for (int j = 1; j <= m_c ; j++)
		{//假定第iK个子数组是nums[i,j],则最大值为:maxPre - sum[0...j] + sum[0...i),llMax=第一项和第三项合并
			maxPre = max(maxPre, pre[j-1]);
			llMax = max(llMax, maxPre + llSum);//第iK个子数组,以nums[j]开头			
			llSum += (long long)nums[j-1]*x;
			dp[j] = llMax - llSum;			
		}
	}
	void Even(vector<long long>& dp, const vector<long long>& pre, const vector<int>& nums, const int x)
	{//偶数
		long long maxPre = (long long)-1E14, llMax = -1E14, llSum = 0;
		for (int j = 1; j <= m_c; j++)
		{//假定第iK个子数组是nums[i,j],则最大值为:maxPre + sum[0...j] - sum[0...i),llMax=第一项和第三项合并
			maxPre = max(maxPre, pre[j-1]);
			llMax = max(llMax, maxPre - llSum);//第iK个子数组,以nums[j]开头			
			llSum += (long long)nums[j - 1] * x;
			dp[j] = llMax + llSum;			
		}
	}
	int m_c;
};

测试用例

template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}
int main()
{
	vect
	or<int> nums;
	int k;
	{
		Solution sln;
		nums = { -100000000, -10000000, 123, 234 }, k = 3;
		auto res = sln.maximumStrength(nums, k);
		Assert(-30000012, res);
	}
	{
		Solution sln;
		nums = { 1,2,3,-1,2 }, k = 3;
		auto res = sln.maximumStrength(nums, k);
		Assert(22, res);
	}
	{
		Solution sln;
		nums = { 12,-2,-2,-2,-2 }, k = 5;
		auto res = sln.maximumStrength(nums, k);
		Assert(64, res);
	}
	{
		Solution sln;
		nums = { -1,-2,-3 }, k = 1;
		auto res = sln.maximumStrength(nums, k);
		Assert(-1, res);
	}
}

优化

pre[j]表示从nums[0…j)选择前iK-1个子数组组成的表达式的最大和。最后一个子数组以nums[x]结尾,x ∈ \in [0,j)。

class Solution {
public:
	long long maximumStrength(vector<int>& nums, int k) {
		m_c = nums.size();
		vector<long long> pre(m_c + 1);
		for (int iK = 0; iK < k; iK++)
		{
			vector<long long> dp(m_c + 1, -1E14);
			long long maxAdd = -1E14, maxSub = -1E14,maxPre = -1E14;
			long long llSum = 0;
			for (int j = 1; j <= m_c; j++)
			{
				maxPre = max(maxPre, pre[j-1]);
				maxAdd = max(maxAdd, maxPre - llSum);
				maxSub = max(maxSub, maxPre + llSum);
				llSum += nums[j - 1]*(long long) ( k - iK );
				dp[j] = (iK & 1) ? (maxSub - llSum) : (maxAdd + llSum);
			}
			pre.swap(dp);
		}
		return *std::max_element(pre.begin(), pre.end());
	}
	int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/445638.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Swagger修改Api文档中的数据类型

swagger不陌生,API接口利器,本次要解决的问题是:我们知道前端在接收Long类型的属性时会出现精度问题,一般我们会在序列化的时候将Long类型的数字转换成String但是swagger的API文档中的类型还是Long,我们要解决的就是这个问题 不知道swagger怎么配置得可以看之前的文章:springb…

空间复杂度的OJ练习——轮转数组

旋转数组OJ链接&#xff1a;https://leetcode-cn.com/problems/rotate-array/ 题目&#xff1a; 思路&#xff1a; 通过题目我们可以知道这是一个无序数组&#xff0c;只需要将数组中的数按给定条件重新排列&#xff0c;因此我们可以想到以下几种方法&#xff1a; 1.暴力求解法…

【Tauri】(5):本地运行candle和 qwen 大模型,并测试速度

1&#xff0c;本地运行candle 关于candle项目 https://github.com/huggingface/candle Hugging Face 使用rust开发的高性能推理框架。 语法简单&#xff0c; 风格与 PyTorch 相似。 CPU 和 Cuda Backend&#xff1a;m1、f16、bf16。 支持 Serverless&#xff08;CPU&#xff…

React 从0到1构建企业级框架基于Antd Designer

一、 create-react-app 创建 cms-front 二、 删除不必须要的文件形成如下结构 1. React版本为17版本 public 文件夹下保留 favicon.ico 偏爱图标index.html资源文件 2.src 保留 index.js 入口文件和app.js(基于spa原则)单文件即可 三、配置eslint 1. 安装 eslint. npm inst…

章六、集合(1)—— Set 接口及实现类、集合迭代、Map 接口、Collections类

一、 Set 接口及实现类 Set接口不能存储重复元素 Set接口继承了Collection接口。Set中所存储的元素是不重复的,但是是无序的, Set中的元素是没有索引的 Set接口有两个实现类&#xff1a; ● HashSet &#xff1a;HashSet类中的元素不能重复 ● TreeSet &#xff1a;可以给Set集…

低密度奇偶校验码LDPC(十)——LDPC码的密度进化

一、密度进化的概念 二、规则LDPC码的密度进化算法(SPA算法) 算法变量表 VN更新的密度进化 CN更新的密度进化 算法总结 程序仿真 参考文献 [1] 白宝明 孙韶辉 王加庆. 5G 移动通信中的信道编码[M]. 北京: 电子工业出版社, 2018. [2] William E. Ryan, Shu Lin. Channel Co…

Spring-AOP基础(全在这里)

八股文部分来源于网络&#xff0c;例子为原创 OOP(Object-oriented programming) 也就是面向对象编程&#xff0c;继承&#xff0c;封装&#xff0c;多态。 局限性 静态语言&#xff1a;类结构一旦定义&#xff0c;不容易被修改(并不是无法修改)。只能侵入性扩展&#xff1a…

太强了!最全的大模型检索增强生成(RAG)技术概览!

本文是对检索增强生成&#xff08;Retrieval Augmented Generation, RAG&#xff09;技术和算法的全面研究&#xff0c;对各种方法进行了系统性的梳理。文章中还包含了我知识库中提到的各种实现和研究的链接集合。 鉴于本文的目标是对现有的RAG算法和技术进行概览和解释&#…

【深度学习笔记】6_5 RNN的pytorch实现

注&#xff1a;本文为《动手学深度学习》开源内容&#xff0c;部分标注了个人理解&#xff0c;仅为个人学习记录&#xff0c;无抄袭搬运意图 6.5 循环神经网络的简洁实现 本节将使用PyTorch来更简洁地实现基于循环神经网络的语言模型。首先&#xff0c;我们读取周杰伦专辑歌词…

【C++】list模拟实现list迭代器失效问题

list模拟实现&list迭代器失效问题 一&#xff0c;list模拟实现1. list的主要框架接口模拟2. list构造&拷贝构造&析构3. list迭代器3.1 普通迭代器3.2 const迭代器 4. 增删查改 二&#xff0c;迭代器失效问题1. list的迭代器失效原因2. 解决办法 一&#xff0c;list…

个推与华为深度合作,成为首批支持兼容HarmonyOS NEXT的服务商

自华为官方宣布HarmonyOS NEXT鸿蒙星河版开放申请以来&#xff0c;越来越多的头部APP宣布启动鸿蒙原生开发&#xff0c;鸿蒙生态也随之进入全新发展的第二阶段。 作为华为鸿蒙生态的重要合作伙伴&#xff0c;个推一直积极参与鸿蒙生态建设。为帮助用户在HarmonyOS NEXT上持续享…

PostGIS 中的 K-Means 聚类操作及应用

K-Means算法&#xff1a; K-means 是数据科学和商业的基本算法。让我们深入了解一下。 1. K-means是一种流行的用于聚类的无监督机器学习算法。它是用于客户细分、库存分类、市场细分甚至异常检测的核心算法。 2. 无监督&#xff1a;K-means 是一种无监督算法&#xff0c;用于…

《MySQL数据库》day2--连接查询、子查询、union、limit、DML语句

文章目录 1.把查询结果去除重复记录 -》distinct2.连接查询2.1什么是连接查询&#xff1f;2.2连接查询的分类2.3笛卡尔积现象2.4内连接2.4.1内连接之等值连接。2.4.2内连接之非等值连接2.4.3内连接之自连接 2.5外连接2.6三张表&#xff0c;四张表怎么连接&#xff1f; 3.子查询…

从0到1入门C++编程——11 函数对象及算法介绍

文章目录 函数对象1、谓词2、内建函数对象(1) 算术仿函数(2) 关系仿函数(3) 逻辑仿函数 常用算法1、常用遍历算法(1) for_each(2) transform 2、常用查找算法(1) find和find_if(2) find_if(3) adjacent_find(4) binary_search(5) count(6) count_if 3、常用排序算法(1) sort(2)…

奇舞周刊第521期:实现vue3响应式系统核心-MVP 模型

奇舞推荐 ■ ■ ■ 实现vue3响应式系统核心-MVP 模型 手把手带你实现一个 vue3 响应式系统&#xff0c;代码并没有按照源码的方式去进行组织&#xff0c;目的是学习、实现 vue3 响应式系统的核心&#xff0c;用最少的代码去实现最核心的能力&#xff0c;减少我们的学习负担&…

序列化相关知识总结

目录 一、序列化1.1 基本概念1.1.1 序列化1.1.2 反序列化1.1.3 数据结构、对象与二进制串1.1.4 序列化/反序列化的目的 1.2 几种常见的序列化和反序列化协议1.2.1 XML&SOAP1.2.2 JSON&#xff08;Javascript Object Notation&#xff09;1.2.3 Protobuf 二、安卓下的序列化…

RabbitMQ中4种交换机的Java连接代码

目录 1.直连交换机&#xff08;Direct&#xff09; 生产者代码示例 消费者代码示例 2.RabbitMQ连接工具类 3.Fanout交换机&#xff08;扇出交换机&#xff0c;广播&#xff09; 生产者 消费者 4.Topic交换机&#xff08;主题交换机&#xff09; 生产者 消费者 5.Hea…

数据库-第六/七章 关系数据理论和数据库设计【期末复习|考研复习】

前言 总结整理不易&#xff0c;希望大家点赞收藏。 给大家整理了一下数据库系统概论中的重点概念&#xff0c;以供大家期末复习和考研复习的时候使用。 参考资料是王珊老师和萨师煊老师的数据库系统概论(第五版)。 数据库系统概论系列文章传送门&#xff1a; 第一章 绪论 第二/…

【Docker】容器的概念

容器技术&#xff1a;容器技术是基于虚拟化技术的&#xff0c;它使应用程序从一个计算机环境快速可靠地转移到另一个计算机环境中&#xff0c;可以说是一个新型地虚拟化技术。 一、docker容器 Docker:是一个开源地容器引擎Docker 是一种轻量级的容器化技术&#xff0c;其主要原…

阿里云服务器租用多少钱一个月?9元1个月?

阿里云服务器租用多少钱一个月&#xff1f;9元1个月&#xff1f;已经降价到5元一个月了。阿里云服务器1个月最低5元/月起&#xff0c;阿里云服务器价格可以按年、按月和按小时购买&#xff0c;本文阿里云服务器网aliyunfuwuqi.com来详细说下阿里云服务器一个月收费价格表&#…