提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
- 前言
- 1.指针运算
- 1.1.指针+-整数
- 1.2.指针-指针
- 1.3.指针的关系运算
- 2.野指针
- 2.1 野指针成因
- 2.2 如何规避野指针
- 3.assert 断言
- 4.指针的使用和传址调用
- 4.1 strlen的模拟实现
- 4.2.传值调用和传址调用
- 5.数组名的理解
- 6.使用指针访问数组
- 7.一维数组传参的本质
前言
上一次粗浅的认识了指针,下来我们在进行讲解。
1.指针运算
指针的基本运算有三种,分别是:
- 指针± 整数
- 指针-指针
- 指针的关系运算
1.1.指针±整数
因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸瓜就能找到后⾯的所有元素。
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
#include<stdio.h>
int main()
{
int arr[] = { 1,2,3,4,5,6,7,8 };
int sz = sizeof(arr) / sizeof(arr[0]);
int* p = &arr[0];
for (int i = 0; i < sz; i++)
printf("%d ", *(p+i));
printf("\n");
return 0;
}
1.2.指针-指针
#include<stdio.h>
int my_strlen(char* s)
{
char* p = s;
while (*p != '\0')
p++;
return p - s;
}
int main()
{
printf("%d\n", my_strlen("abc"));
return 0;
}
1.3.指针的关系运算
#include <stdio.h>
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
int* p = &arr[0];
int i = 0;
int sz = sizeof(arr) / sizeof(arr[0]);
while (p < arr + sz) //指针的⼤⼩⽐较
{
printf("%d ", *p);
p++;
}
return 0;
}
2.野指针
概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)
2.1 野指针成因
2.1.1.指针未初始化
//指针未初始化
#include <stdio.h>
int main()
{
int* p;//局部变量指针未初始化,默认为随机值
*p = 20;
return 0;
}
2.1.2 指针越界访问
//指针越界访问
#include <stdio.h>
int main()
{
int arr[10] = { 0 };
int* p = &arr[0];
int i = 0;
for (i = 0; i <= 11; i++)
{
//当指针指向的范围超出数组arr的范围时,p就是野指针
*(p++) = i;
}
return 0;
}
2.1.3.指针指向的空间释放
#include <stdio.h>
int* test()
{
int n = 100;
return &n;
}
int main()
{
int* p = test();
printf("%d\n", *p);
return 0;
}
2.2 如何规避野指针
2.2.1.指针初始化
如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL。NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是无法使用的,读写该地址
会报错。
初始化如下:
#include <stdio.h>
#include<stdlib.h>
int main()
{
int num = 10;
int* p1 = #
int* p2 = NULL;
return 0;
}
2.2.2 小心指针越界
⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。
2.2.3指针变量不再使⽤时,及时置NULL,指针使用之前检查有效性
当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问,同时使⽤指针之前可以判断指针是否为NULL。
我们可以把野指针想象成野狗,野狗放任不管是⾮常危险的,所以我们可以找⼀棵树把野狗拴起来,就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓起来,就是把野指针暂时管理起来。
不过野狗即使拴起来我们也要绕着⾛,不能去挑逗野狗,有点危险;对于指针也是,在使用之前,我们也要判断是否为NULL,看看是不是被拴起来起来的野狗,如果是不能直接使⽤,如果不是我们再去
使用。
#include<stdio.h>
#include<stdlib.h>
int main()
{
int arr[10] = { 1,2,3,4,5,67,7,8,9,10 };
int* p = &arr[0];
for (i = 0; i < 10; i++)
{
*(p++) = i;
}
//此时p已经越界了,可以把p置为NULL
p = NULL;
//下次使⽤的时候,判断p不为NULL的时候再使⽤
//...
p = &arr[0];//重新让p获得地址
if (p != NULL) //判断
{
//...
}
return 0;
}
2.2.4避免返回局部变量的地址
如造成野指针的第3个例子,不要返回局部变量的地址。
3.assert 断言
assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”。
assert(p != NULL);
上⾯代码在程序运⾏到这⼀⾏语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运行,否则就会终止运行,并且给出报错信息提示。
assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写入一条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。
assert() 的使用对程序员是⾮常友好的,使⽤ assert() 有几个好处:它不仅能⾃动标识⽂件和出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问
题,不需要再做断言,就在 #include <assert.h> 语句的前⾯,定义⼀个宏 NDEBUG 。
#define NDEBUG
#include<assert.h>
然后,重新编译程序,编译器就会禁⽤⽂件中所有的 assert() 语句。如果程序⼜出现问题,可以移除这条 #define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert() 语句。
assert() 的缺点是,因为引入了额外的检查,增加了程序的运行时间。
⼀般我们可以在 Debug 中使用,在 release 版本中选择禁⽤ assert 就行,在 VS 这样的集成开发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在 Release 版本不影响用户使用时程序的效率。
4.指针的使用和传址调用
4.1 strlen的模拟实现
库函数strlen的功能是求字符串⻓度,统计的是字符串中 \0 之前的字符的个数。
函数原型如下:
参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。
如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停⽌。
参考代码如下:
#include<stdio.h>
int my_strlen(const char* str)
{
int count = 0;
assert(str);
while (*str)
{
count++;
str++;
}
return count;
}
int main()
{
int len = my_strlen("abcdef");
printf("%d\n", len);
return 0;
}
4.2.传值调用和传址调用
学习指针的⽬的是使⽤指针解决问题,那什么问题,非指针不可呢?
例如:写⼀个函数,交换两个整型变量的值
⼀番思考后,我们可能写出这样的代码:
#include <stdio.h>
void Swap1(int x, int y)
{
int tmp = x;
x = y;
y = tmp;
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
printf("交换前:a=%d b=%d\n", a, b);
Swap1(a, b);
printf("交换后:a=%d b=%d\n", a, b);
return 0;
}
调试结果:
大家可以发现,&a跟&x不一样,&a和&y不一样,都开辟了新的内存。Swap1函数在使⽤
的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式我们之前在函数的时候就知道了,这种叫传值调用。
结论:实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实参。
所以Swap是失败的了。
那怎么办呢?
我们现在要解决的就是当调⽤Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。那么就可以使⽤指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数⾥边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。
#include <stdio.h>
void Swap2(int*px, int*py)
{
int tmp = 0;
tmp = *px;
*px = *py;
*py = tmp;
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
printf("交换前:a=%d b=%d\n", a, b);
Swap2(&a, &b);
printf("交换后:a=%d b=%d\n", a, b);
return 0;
}
输出结果:
我们可以看到实现成Swap2的方式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传递给了函数,这种函数调⽤⽅式叫:传址调用。
传址调用,可以让函数和主调函数之间建⽴真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调⽤。如果函数内部要修改主调函数中的变量的值,就需要传址调用。
5.数组名的理解
我们在使⽤指针访问数组的内容时,有这样的代码:
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
int *p = &arr[0];
这⾥我们使⽤ &arr[0] 的方式拿到了数组第⼀个元素的地址,但是其实数组名本来就是地址,而且是数组首元素的地址,我们来做个测试。
#include <stdio.h>
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
printf("&arr[0] = %p\n", &arr[0]);
printf("arr = %p\n", arr);
return 0;
}
运行结果:
我们发现数组名和数组⾸元素的地址打印出的结果⼀模⼀样,数组名就是数组首元素(第⼀个元素)的地址。
这时候有同学会有疑问?数组名如果是数组⾸元素的地址,那下面的代码怎么理解呢?
#include <stdio.h>
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
printf("%d\n", sizeof(arr));
return 0;
}
运行结果:
如果arr是数组⾸元素的地址,那输出应该的应该是4/8才对。
其实数组名就是数组⾸元素(第⼀个元素)的地址是对的,但是有两个例外:
- sizeof(数组名),sizeof中单独放数组名,这⾥的数组名表⽰整个数组,计算的是整个数组的大小,单位是字节
- &数组名,这⾥的数组名表⽰整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素的地址是有区别的)
除此之外,任何地⽅使⽤数组名,数组名都表示首元素的地址。
这时有好奇的同学,再试一下这个代码:
#include <stdio.h>
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
printf("&arr[0] = %p\n", &arr[0]);
printf("arr = %p\n", arr);
printf("&arr = %p\n", &arr);
return 0;
}
运行结果:
三个打印结果⼀模⼀样,这时候⼜纳闷了,那arr和&arr有啥区别呢?
#include <stdio.h>
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
printf("&arr[0] = %p\n", &arr[0]);
printf("&arr[0]+1 = %p\n", &arr[0] + 1);
printf("arr = %p\n", arr);
printf("arr+1 = %p\n", arr + 1);
printf("&arr = %p\n", &arr);
printf("&arr+1 =%p\n", &arr + 1);
return 0;
}
运行结果:
这⾥我们发现&arr[0]和&arr[0]+1相差4个字节,arr和arr+1 相差4个字节,是因为&arr[0] 和 arr 都是⾸元素的地址,+1就是跳过⼀个元素。
但是&arr 和 &arr+1相差40个字节,这就是因为&arr是数组的地址,+1 操作是跳过整个数组的。
到这里大家应该搞清楚数组名的意义了吧。
数组名是数组首元素的地址,但是有2个例外。
6.使用指针访问数组
有了前⾯知识的⽀持,再结合数组的特点,我们就可以很⽅便的使⽤指针访问数组了。
#include <stdio.h>
int main()
{
int arr[10] = { 0 };
//输⼊
int i = 0;
int sz = sizeof(arr) / sizeof(arr[0]);
//输⼊
int* p = arr;
for (i = 0; i < sz; i++)
{
scanf("%d", p + i);
//scanf("%d", arr+i);//也可以这样写
}
//输出
for (i = 0; i < sz; i++)
{
printf("%d ", *(p + i));
}
return 0;
}
这个代码搞明⽩后,我们再试⼀下,如果我们再分析⼀下,数组名arr是数组⾸元素的地址,可以赋值给p,其实数组名arr和p在这⾥是等价的。那我们可以使⽤arr[i]可以访问数组的元素,那p[i]是否也可以访问数组呢?
#include <stdio.h>
int main()
{
int arr[10] = {0};
//输⼊
int i = 0;
int sz = sizeof(arr)/sizeof(arr[0]);
//输⼊
int* p = arr;
for(i=0; i<sz; i++)
{
scanf("%d", p+i);
//scanf("%d", arr+i);//也可以这样写
}
//输出
for(i=0; i<sz; i++)
{
printf("%d ", p[i]);
}
return 0;
}
在第18行的地方,将* (p+i)换成p[i]也是能够正常打印的,所以本质上p[i] 是等价于 *(p+i)。
同理arr[i] 应该等价于 *(arr+i),数组元素的访问在编译器处理的时候,也是转换成⾸元素的地址+偏移量求出元素的地址,然后解引⽤来访问的。
7.一维数组传参的本质
数组我们学过了,之前也讲了,数组是可以传递给函数的,这个⼩节我们讨论⼀下数组传参的本质。
⾸先从⼀个问题开始,我们之前都是在函数外部计算数组的元素个数,那我们可以把数组传给⼀个函数后,函数内部求数组的元素个数吗?
#include <stdio.h>
void test(int arr[])
{
int sz2 = sizeof(arr)/sizeof(arr[0]);
printf("sz2 = %d\n", sz2);
}
int main()
{
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
int sz1 = sizeof(arr)/sizeof(arr[0]);
printf("sz1 = %d\n", sz1);
test(arr);
return 0;
}
输出的结果:
我们发现在函数内部是没有正确获得数组的元素个数。
这就要学习数组传参的本质了,上个⼩节我们学习了:数组名是数组⾸元素的地址;那么在数组传参的时候,传递的是数组名,也就是说本质上数组传参传递的是数组首元素的地址。
所以函数形参的部分理论上应该使⽤指针变量来接收⾸元素的地址。那么在函数内部我们写sizeof(arr) 计算的是⼀个地址的大小(单位字节)而不是数组的大小(单位字节)。正是因为函数的参数部分是本质是指针,所以在函数内部是没办法求的数组元素个数的。
#include<stdio.h>
void test(int arr[])//参数写成数组形式,本质上还是指针
{
printf("%d\n", sizeof(arr));
}
void test(int* arr)//参数写成指针形式
{
printf("%d\n", sizeof(arr));//计算⼀个指针变量的⼤⼩
}
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
test(arr);
return 0;
}
总结:一维数组传参,形参的部分可以写成数组的形式,也可以写成指针的形式。
完