19 卷积层【李沐动手学深度学习v2课程笔记】

目录

1. 从全连接到卷积

2. 卷积层

3. 图像卷积代码

3.1 互相关运算

3.2 实现二维卷积层

3.3 图像中目标的边缘检测

3.4 学习卷积核

4. 小结


1. 从全连接到卷积

在欧几里得几何中,平移是一种几何变换,表示把一幅图像或一个空间中的每一个点在相同方向移动相同距离。比如对图像分类任务来说,图像中的目标不管被移动到图片的哪个位置,得到的结果(标签)应该是相同的,这就是卷积神经网络中的平移不变性。

平移不变性意味着系统产生完全相同的响应(输出),不管它的输入是如何平移的 。平移同变性(translation equivariance)意味着系统在不同位置的工作原理相同,但它的响应随着目标位置的变化而变化 。

卷积神经网络正是将空间不变性(spatial invariance)的这一概念系统化,从而基于这个模型使用较少的参数来学习有用的表示。 局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。 最终,可以聚合这些局部特征,以在整个图像级别进行预测。

总结:卷积是一个特殊的全连接层

2. 卷积层

3. 图像卷积代码

3.1 互相关运算

import torch
from torch import nn
from d2l import torch as d2l

def corr2d(X, K):  #@save
    """计算二维互相关运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

验证上述二维互相关运算的输出

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

3.2 实现二维卷积层

卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。 所以,卷积层中的两个被训练的参数是卷积核权重和标量偏置。 就像我们之前随机初始化全连接层一样,在训练基于卷积层的模型时,我们也随机初始化卷积核权重。

基于上面定义的corr2d函数实现二维卷积层。在__init__构造函数中,将weightbias声明为两个模型参数。前向传播函数调用corr2d函数并添加偏置。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

3.3 图像中目标的边缘检测

如下是卷积层的一个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。 首先,我们构造一个6×8像素的黑白图像。中间四列为黑色(0),其余像素为白色(1)。

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

接下来,我们构造一个高度为1、宽度为2的卷积核K。当进行互相关运算时,如果水平相邻的两元素相同,则输出为零,否则输出为非零。

K = torch.tensor([[1.0, -1.0]])

现在,我们对参数X(输入)和K(卷积核)执行互相关运算。 如下所示,输出Y中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘,其他情况的输出为0。

Y = corr2d(X, K)
Y

现在我们将输入的二维图像转置,再进行如上的互相关运算。 其输出如下,之前检测到的垂直边缘消失了。 不出所料,这个卷积核K只可以检测垂直边缘,无法检测水平边缘。

corr2d(X.t(), K)

3.4 学习卷积核

如果我们只需寻找黑白边缘,那么以上[1, -1]的边缘检测器足以。然而,当有了更复杂数值的卷积核,或者连续的卷积层时不可能手动设计滤波器。那么是否可以学习由X生成Y的卷积核呢?

现在让我们看看是否可以通过仅查看“输入-输出”对来学习由X生成Y的卷积核。

我们先构造一个卷积层,并将其卷积核初始化为随机张量。

接下来,在每次迭代中,我们比较Y与卷积层输出的平方误差,然后计算梯度来更新卷积核。

为了简单起见,我们在此使用内置的二维卷积层,并忽略偏置。

# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)

# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2  # 学习率

for i in range(10):
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2
    conv2d.zero_grad()
    l.sum().backward()
    # 迭代卷积核
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')

在10次迭代之后,误差已经降到足够低。现在我们来看看我们所学的卷积核的权重张量。

conv2d.weight.data.reshape((1, 2))

4. 小结

  • 二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。

  • 我们可以设计一个卷积核来检测图像的边缘。

  • 我们可以从数据中学习卷积核的参数。

  • 学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。

  • 当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/443106.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql中insert … select锁范围

1、执行 insert … select 的时候,对目标表也不是锁全表,而是只锁住需要访问的资源。 例如, CREATE TABLE t (id int(11) NOT NULL AUTO_INCREMENT,c int(11) DEFAULT NULL,d int(11) DEFAULT NULL,PRIMARY KEY (id),UNIQUE KEY c (c) ) EN…

streamlit初学-用streamlit实现云台控制界面

用streamlit实现云台控制界面 效果图PC上的效果手机上的效果 源码: 本文演示了,如何用streamlit做一个云台控制界面。功能包括:用户登录,事件的处理,图片的更新 版本信息: streamlit_authenticator: 下载链接streamlit : 1.31.1python: 3.11 修改点: streamlit_authenticato…

【嵌入式】字体极限瘦身术:Fontmin在嵌入式UI中的魔法应用(附3500常用汉字)

1. 概述 在嵌入式系统的用户界面(UI)设计中,字体的选择和优化至关重要。一个恰当的字体不仅能够提升用户体验,还能彰显产品特色。然而,由于嵌入式设备常常受限于存储空间和处理能力,大型字体文件可能成为性…

arkTS语法

lineHeight与css不同? 1、arkTS是什么 在继承了TS语法的基础上,主要扩展了声明式UI开发相关的能力 声明式UI是一种编写用户界面的范式。 2、声明组件的完整语法 3、自定义组件的语法使用 struct arkTS新增的关键字,是用于自定义组件或者自…

餐饮行业咨询数据在哪里查找?

1.中国饭店协会:国资委和商务部等政府指导发展,参与制定行业国家标准、行业标准与行业自律规则。按月出版《中国饭店业》会员刊物、及时更新协会官方网站和官方微信,方便会员单位及时掌握国内外饭店与餐饮业的最新动态。宣传企业经典案例、反…

使用jquery的autocomplete属性实现联想补全操作

平时使用百度,淘宝等软件搜索时,常见一个搜索框联想提示,感觉确实好用但没有研究过原理,最近恰巧工作中遇到一个同样的场景,不同于大厂使用高端的Python,这次需要使用jQuery的autocomplete属性来自动联想补…

【深度学习笔记】6_7 门控循环单元(GRU)

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 6.7 门控循环单元(GRU) 上一节介绍了循环神经网络中的梯度计算方法。我们发现,当时间步数较大或者…

vue 下载的插件从哪里上传?npm发布插件详细记录

文章参考: 参考文章一: 封装vue插件并发布到npm详细步骤_vue-cli 封装插件-CSDN博客 参考文章二: npm发布vue插件步骤、组件、package、adduser、publish、getElementsByClassName、important、export、default、target、dest_export default…

HTML静态网页成品作业(HTML+CSS+JS)——和平精英介绍设计制作(4个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现图片轮播,共有4个页面。 二、作品…

Pytorch学习 day08(最大池化层、非线性激活层)

最大池化层 最大池化,也叫上采样,是池化核在输入图像上不断移动,并取对应区域中的最大值,目的是:在保留输入特征的同时,减小输入数据量,加快训练。参数设置如下: kernel_size&#…

微信加好友频繁会被封号吗?

微信加好友频繁会被封号吗? 微信规定,每个人每天最多可以加20个好友,但一天之内如果频繁加好友,微信可能会出现异常提示,需要暂停好友添加操作。 面对微信上突如其来的大量好友申请,一定要谨慎处理,以免被…

Golang搭建grpc环境

简介 OS : Windows 11 Golang 版本: go1.22.0 grpc : 1.2 protobuffer: 1.28代理 没有代理国内环境下载不了库七牛CDN (试过可用) go env -w GOPROXYhttps://goproxy.cn,direct阿里云代理(运行grpc时下载包出现报错 ): go env -w GOPROXYhttps://mirr…

CCProxy代理服务器地址的设置步骤

目录 前言 一、下载和安装CCProxy 二、启动CCProxy并设置代理服务器地址 三、验证代理服务器设置是否生效 四、使用CCProxy进行代理设置的代码示例 总结 前言 CCProxy是一款常用的代理服务器软件,可以帮助用户实现网络共享和上网代理。本文将详细介绍CCProxy…

IntelliJ IDEA 2020.2.4试用方法

打开idea,准备好ide-eval-resetter压缩包。 将准备好的压缩包拖入idea中 选中弹窗中的自动重置选项,并点击重置 查看免费试用时长

[数据集][目标检测]变电站缺陷检测数据集VOC+YOLO格式8307张17类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8307 标注数量(xml文件个数):8307 标注数量(txt文件个数):8307 标注…

汽车大灯汽车尾灯破裂裂纹破损破洞掉角崩角等问题能修复吗?修复后需要注意什么?

汽车灯罩破损修复后,车主需要注意以下几点: 检查修复效果:修复完成后,车主应该仔细检查灯罩的修复效果,确保破损部分已经被填补并恢复原有的透明度和光泽。如果修复效果不理想,需要及时联系维修店进行处理…

问题:前端获取long型数值精度丢失,后面几位都为0

文章目录 问题分析解决 问题 通过接口获取到的数据和 Postman 获取到的数据不一样,仔细看 data 的第17位之后 分析 该字段类型是long类型问题:前端接收到数据后,发现精度丢失,当返回的结果超过17位的时候,后面的全…

什么是工业级物联网智能网关?如何远程控制PLC?

在这个信息爆炸的时代,物联网技术已经逐渐渗透到我们生活的方方面面,而工业级物联网智能网关作为连接工业设备和云端的重要桥梁,更是引领着工业4.0时代的浪潮。那么,究竟什么是工业级物联网智能网关呢?今天&#xff0c…

git删除comimit提交的记录

文章目录 本地的删除远程同步修改上次提交更多详情阅读 本地的删除 例如我的提交历史如下 commit 58211e7a5da5e74171e90d8b90b2f00881a48d3a Author: test <test36nu.com> Date: Fri Sep 22 20:55:38 2017 0800add d.txtcommit 0fb295fe0e0276f0c81df61c4fd853b7a00…

详解DNS服务

华子目录 概述产生原因作用连接方式 因特网的域名结构拓扑分类域名服务器类型划分 DNS域名解析过程分类解析图图过程分析注意 搭建DNS域名解析服务器概述安装软件bind服务中的三个关键文件 配置文件分析主配置文件共4部分组成区域配置文件作用区域配置文件示例分析正向解析反向…