Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层)

神经网络基本骨架的搭建

  • Module:给所有的神经网络提供一个基本的骨架,所有神经网络都需要继承Module,并定义_ _ init _ _方法、 forward() 方法
  • 在_ _ init _ _方法中定义,卷积层的具体变换,在forward() 方法中定义,神经网络的前向传播具体是什么样的
  • 官方代码样例如下:
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
  • 表明输入 x 经过一个卷积层A,一个非线性层a,一个卷积层B,一个非线性层b,最后输出,如下图:
    在这里插入图片描述
  • 简单模型代码如下:
from torch import nn
import torch

# 定义一个简单的Module
class Tudui(nn.Module):
    def __init__(self): # 初始化函数
        super().__init__()  # 调用父类的初始化函数

    def forward(self, input):   # 前向传播函数
        output = input + 1  # 定义张量的加法运算
        return output   # 返回输出张量

tudui = Tudui() # 实例化一个Tudui对象
x = torch.tensor(1.0)   # tensor()函数可以将任意数据转换为张量
print(tudui(x))
* 注意:可以在调试模式中,选择单步执行代码,一步一步执行更清晰

2D卷积操作(了解原理即可,实际直接使用卷积层)

在这里插入图片描述

  • 2D卷积操作:卷积核在输入图像上不断移动,并把对应位相乘再求和,最后得到输出结果,以下是参数设置:
    • input:输入张量的维数要是四维,batch表示一次输入多少张图像,channel表示通道数,RGB图像的通道数为3,灰度图像(二维张量)的通道数为1,H为高度,W为宽度
    • weight:卷积核,维数也要是四维,out_channel表示(输出通道数)卷积核的数量,in_channel表示输入图像的通道数,一般groups为1,H为高度,W为宽度
    • stride:卷积核每次移动的步长(为整数或者长度为2的元组),如果是整数,表示在水平和垂直方向上使用相同的步长。如果是元组,分别表示在水平和垂直方向上的步长。默认为1。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或长度为2的元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
  • 例如,将一张灰度图经过2D卷积操作得到输出的代码,如下:
import torch

# 因为想让输入数据是tensor类型的,所以使用torch.tensor
input = torch.tensor([[1,2,0,3,1],
                      [0,1,2,3,1],
                      [1,2,1,0,0],
                      [5,2,3,1,1],
                      [2,1,0,1,1]])

# 因为想让卷积核是tensor类型的,所以使用torch.tensor
kernel = torch.tensor([[1,2,1],
                      [0,1,0],
                      [2,1,0]])
print(input.shape) # torch.Size([5, 5])
print(kernel.shape) # torch.Size([3, 3])

# 由于卷积核的尺寸和输入的尺寸都不满足卷积运算的要求,所以需要对输入和卷积核进行维度的扩展
input = torch.reshape(input, [1,1,5,5]) # 输入是一张二维图片,所以batch_size=1(一张),通道数为1(二维张量)
kernel = torch.reshape(kernel, [1,1,3,3]) # 卷积核的个数为1,所以输出通道数为1,输入通道数由上可知为1

print(input.shape) # torch.Size([1, 1, 5, 5])
print(kernel.shape) # torch.Size([1, 1, 3, 3])

output = torch.nn.functional.conv2d(input, kernel, stride=1)   # 经过2D卷积运算后的输出 
print(output)
  • 可视化图如下:
    在这里插入图片描述
  • padding设置为1的可视化图如下:
    在这里插入图片描述

2D卷积层

在这里插入图片描述
在这里插入图片描述

  • 2D卷积层,通常我们直接使用卷积层即可,上一节仅供了解,以下是参数设置:
    • in_channels:输入通道数,RGB图像为3,灰度图像为1
    • out_channels:输出通道数,即卷积核的个数
    • kernel_size:卷积核的高宽(整数或元组),整数时表示高宽都为该整数,元组时表示分别在水平和垂直方向上的长度。我们只需要设置卷积核的高宽,而卷积核内部的具体参数不需要我们指定,它是在神经网络的训练中不断地对分布进行采样,同时进行不断调整
    • stride:卷积核每次移动的步长(整数或元组),整数时表示在水平和垂直方向上使用相同的步长。元组时分别表示在水平和垂直方向上的步长。默认为1。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
    • padding_mode:控制以什么样的模式进行填充,默认为 zeros 零填充
    • dilation:卷积核内部元素之间的距离,空洞卷积
    • groups:默认为1
    • bias:给输出加一个偏置,默认为True
  • 以下是2D卷积层的可视化图像,青色的为输出图像,蓝色为输入图像,深蓝色为卷积核:
请添加图片描述请添加图片描述
No padding,No stridesAribitrary padding,No strides
请添加图片描述请添加图片描述
Half padding,No stridesFull padding,No strides
请添加图片描述请添加图片描述请添加图片描述
No padding,stridesPadding,stridesPadding,strides(odd)
  • 当out_channel 为2时,卷积核也为2个,会先拿第一个卷积核与输入图像进行卷积,得到第一个输出,然后会拿第二个卷积核与输入图像进行卷积,得到第二个输出,这两个卷积核内部的具体参数可能会不同,最后把这两个输出叠加起来得到最终的输出,以下是可视化图像:
    在这里插入图片描述
  • 构建一个包含一层简单2D卷积层的神经网络模型,代码如下:
import torch
import torch.nn as nn
import torchvision

test_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=0)

class Tudui(nn.Module):

    def __init__(self): # 初始化
        super().__init__()  # 继承父类的初始化
        self.conv1 = nn.Conv2d(3, 6, 3, 1, 0)   # 输入通道数3,输出通道数6,卷积核大小3*3,步长1,填充0

    def forward(self, x):  # 前向传播
        x = self.conv1(x)   # 调用卷积层对输入x进行卷积
        return x

tudui = Tudui() # 实例化网络模型

print(tudui)    # 打印网络结构

# 输出结果:
# Files already downloaded and verified
# Tudui(
#  (conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
# )
  • 打印输入和输出的代码如下:
    • 注意:由于输入经过了一层卷积,所以输出尺寸会变小
for data in test_loader:
    imgs, targets = data
    outputs = tudui(imgs)   # 调用网络模型进行前向传播
    print(imgs.shape)       # 打印输入数据的形状,torch.Size([64, 3, 32, 32])
    print(outputs.shape)    # 打印输出数据的形状,torch.Size([64, 6, 30, 30])
  • 可以通过tensorboard来展示输入图像和输出图像,代码如下:
    • 注意: 由于outputs的channel为6,而add_images函数要求channel为3,所以需要对outputs进行处理
    • 把torch.Size([64, 6, 30, 30]) -> torch.Size([xx, 3, 30, 30]) 把6个通道变成3个通道,多出来的部分就打包放入batch_size中
    • 如果不知道变换后的batch_size是多少,可以写-1,PyTorch会自动计算
import torch
import torch.nn as nn
import torchvision
from torch.utils.tensorboard import SummaryWriter

test_dataset = torchvision.datasets.CIFAR10(root='Dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=0)

class Tudui(nn.Module):

    def __init__(self): # 初始化
        super().__init__()  # 继承父类的初始化
        self.conv1 = nn.Conv2d(3, 6, 3, 1, 0)   # 输入通道数3,输出通道数6,卷积核大小3*3,步长1,填充0

    def forward(self, x):  # 前向传播
        x = self.conv1(x)   # 调用卷积层对输入x进行卷积
        return x

tudui = Tudui() # 实例化网络模型

writer = SummaryWriter("logs") # 创建一个SummaryWriter对象,指定日志文件保存路径
step = 0
for data in test_loader:
    imgs, targets = data
    outputs = tudui(imgs)   # 调用网络模型进行前向传播
    writer.add_images("input", imgs, step)  # 将输入数据imgs写入日志文件
    # 由于outputs的channel为6,而add_images函数要求channel为3,所以需要对outputs进行处理
    # 把torch.Size([64, 6, 30, 30]) -> torch.Size([xx, 3, 30, 30]) 把6个通道变成3个通道,多出来的部分就打包放入batch_size中
    # 如果不知道变换后的batch_size是多少,可以使用-1,PyTorch会自动计算
    outputs = torch.reshape(outputs, (-1, 3, 30, 30))  # 将outputs的channel从6改为3
    writer.add_images("output", outputs, step)  # 将输出数据outputs写入日志文件
    step += 1

writer.close()  # 关闭日志文件
  • 结果如下:
    在这里插入图片描述
  • 注意:如果别人论文里没有写stride、padding具体为多少,那么我们可以根据以下式子进行推导:
    • N:batch_size
    • C:channel
    • H:高
    • W:宽
      在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/442557.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 3 教程(1)

Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python 介绍及安装教程我们在后期中有介…

【高效开发工具系列】Windows 系统下将 Windows 键盘的 ctrl 和 alt 互换

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

JVM——执行引擎

文章目录 1、概述2、计算机语言的发展史2.1、机器码2.2、汇编语言2.3、高级语言2.4、字节码 3、Java代码编译和执行过程4、解释器5、JIT编译器5.1、为什么HotSpot VM同时存在JIT编译器和解释器5.2、热点代码探测确定何时JIT5.3、设置执行模式5.4、C1编译器和C2编译器 6、AOT编译…

【蓝桥杯-单片机】LED和按键小练习:Led彩灯控制系统

文章目录 【蓝桥杯-单片机】LED和按键小练习:Led彩灯控制系统01 题目描述02 题目解答03 本题总结整体逻辑框架(详细版)整体逻辑框架(缩略版)按键读取模块按键消抖模块流水灯显示模式(1)从上向下…

USB PD快充充电器静电浪涌保护TVS

USB PD快充充电器已经成为生活中无处不在的必备物品,它能够为我们的各种电子设备提供快速而便捷的充电解决方案,比如智能手机和平板电脑,笔记本电脑,可穿戴设备,摄像机和摄像设备,汽车充电器,以…

图片二维码不限扫码次数怎么做?长期有效的图片二维码在线生成技巧

图片制作二维码能长期使用吗?在生活中很多地方都可以看到很多存有图片的二维码,通过扫码后查看图片内容,比如一些公共场所、产品介绍、景区等场所中都有图片转二维码的应用。那么怎么做出可以长期扫码展示图片二维码呢,其实方法很…

Awesome-Backbones-main——alexnet模型分析

AlexNet作为骨干网络相对较老,可能在复杂数据集上的表现不如一些最新的深度网络结构,如ResNet、EfficientNet等,学习率调整策略中采用了阶梯式学习率更新器,可能并不总是适合所有数据集和模型,需要根据具体情况调整学习…

【办公类-21-09】三级育婴师 视频转音频Python

背景需求: 用AI对话工具试试能否Python将MP4视频转成音频,再转成文字docx(不用格式工厂转) 结果: 视频MP4转音频wav 视频MP4转音频wav 作者:AI对话大师, 时间:2024年3月8日 impo…

开源的Java报表库JasperReports介绍

JasperReports 是一个流行的开源 Java 报表库,它允许开发人员创建丰富的、基于 Java 的报表,这些报表可以与多种数据源交互,并且可以很容易地集成到 Java 应用程序中。JasperReports 提供了丰富的功能,包括数据可视化、图表、子报…

【Vue+ElementUI】Table表格实现自定义表头展示+表头拖拽排序(附源码)

效果图 因项目采用的是Vue2,所以这个功能目前采用的是Vue2的写法。 Vue3请自行修改扩展代码;或收藏关注帖子,后续Vue3项目如有用到会在本帖子更新修改。 安装vuedraggable(拖拽插件) cnpm i vuedraggable先说用法&…

github Commits must have verified signatures

1.首先确认是否有权限,如有权限的情况下那就是配置有问题了 我的情况是,能拉取代码,提交的时候出现这种情况:Commits must have verified signatures 这里是生成证书,如果已经生成过的,就不用生成了 ssh…

GIS之深度学习08:安装GPU环境下的pytorch

环境: cuda:12.1.1 cudnn:12.x pytorch:2.2.0 torchvision:0.17.0 Python:3.8 操作系统:win (本文安装一半才发现pytorch与cuda未对应,重新安装了cuda后才开始的&a…

超声波清洗机哪个品牌好?四款热度高超声波清洗机力荐

在当今社会,随着生活节奏的加快,年轻人越来越多地依赖眼镜来纠正视力或保护眼睛。无论是为了时尚搭配,还是因为长时间面对电脑和手机屏幕导致的视力问题,眼镜已经成为许多年轻人日常生活中不可或缺的配件。然而,就在我…

SSH安全协议介绍

知识改变命运,技术就是要分享,有问题随时联系,免费答疑,欢迎联系! SSH(Secure Shell,安全外壳)是一种网络安全协议,通过加密和认证机制实现安全的访问和文件传输等业…

植物病虫害:YOLO水稻虫害识别数据集(6类,五千余张图像,标注完整)

YOLO水稻虫害识别数据集,包含褐飞虱,绿叶蝉,正常叶片,稻虫,二化螟,蝇蛆6个类别,共五千余张图像,yolo标注完整。 适用于CV项目,毕设,科研,实验等 …

uniapp微信小程序获取当前位置

uni-app微信小程序uni.getLocation获取位置;authorize scope.userLocation需要在app.json中声明permission;小程序用户拒绝授权后重新授权-CSDN博客

AIOPS:Zabbix结合讯飞星火做自动化告警+邮件通知并基于人工智能提供解决方案

目前Zabbix官方已经提供Zabbix+ChatGPT的解决方案 ChatGPT一周年,你充分利用了吗?Zabbix+ChatGPT,轻松化解告警! 但是由于需要魔法等其他因素,比较不稳定,遂决定使用国内模型,这里我挑选的是讯飞星火,基于我之前的文档,在此基础上通过Zabbix的告警脚本实现调用AI模型…

安装及管理docker

文章目录 1.Docker介绍2.Docker安装3.免sudo设置4. 使用docker命令5.Images6.运行docker容器7. 管理docker容器8.创建image9.Push Image 1.Docker介绍 Docker 是一个简化在容器中管理应用程序进程的应用程序。容器让你在资源隔离的进程中运行你的应用程序。类似于虚拟机&#…

[LeetCode][102]二叉树的层序遍历——遍历结果中每一层明显区分

题目 102. 二叉树的层序遍历 给定二叉树的根节点 root,返回节点值的层序遍历结果。即逐层地,从左到右访问所有节点。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] 示例 2: 输入…

HDLBits刷题Day24,3.2.5.9 Design a Moore FSM

3.2.5.9 Design a Moore FSM 问题描述 分析: 1.s000时,打开fr1,fr2,fr3和补充水dfr 2.s001时,打开fr1,fr2 3.s011时,打开fr1 4.s111时,关闭 5.当水位下降时,打开dfr 绘制一下状态转移图 代码&#xff1a…