用Python实现一个简单的——人脸相似度对比

近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。

幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某些模型。今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣!

整体思路:

1、预先导入所需要的人脸识别模型;

2、遍历循环识别文件夹里面的图片,让模型“记住”人物的样子;

3、输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果。

使用到的第三方模块和模型:

1、模块:os,dlib,glob,numpy;

2、模型:人脸关键点检测器,人脸识别模型。

第一步:导入需要的模型。

这里解释一下两个dat文件:

它们的本质是参数值(即神经网络的权重)。人脸识别算是深度学习的一个应用,事先需要经过大量的人脸图像来训练。所以一开始我们需要去设计一个神经网络结构,来“记住”人类的脸。

对于神经网络来说,即便是同样的结构,不同的参数也会导致识别的东西不一样。在这里,这两个参数文件就对应了不同的功能(它们对应的神经网络结构也不同):

shape_predictor.dat这个是为了检测人脸的关键点,比如眼睛,嘴巴等等;dlib_face_recognition.dat是在前面检测关键点的基础上,生成人脸的特征值。

所以后面使用dlib模块的时候,其实就是相当于,调用了某个神经网络结构,再把预先训练好的参数传给我们调用的神经网络。顺便提一下,在深度学习领域中,往往动不动会训练出一个上百M的参数模型出来,是很正常的事。

import os,dlib,glob,numpy
from skimage import io

# 人脸关键点检测器
predictor_path = "shape_predictor.dat"
# 人脸识别模型、提取特征值
face_rec_model_path = "dlib_face_recognition.dat"
# 训练图像文件夹
faces_folder_path ='train_images' 

# 加载模型
detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(predictor_path)
facerec = dlib.face_recognition_model_v1(face_rec_model_path)

第二步:对训练集进行识别。

在这一步中,我们要完成的是,对图片文件夹里面的人物图像,计算他们的人脸特征,并放到一个列表里面,为了后面可以和新的图像进行一个距离计算。关键地方会加上注释,应该不难理解。

candidate = []         # 存放训练集人物名字
descriptors = []       #存放训练集人物特征列表

for f in glob.glob(os.path.join(faces_folder_path,"*.jpg")):
    print("正在处理: {}".format(f))
    img = io.imread(f)
    candidate.append(f.split('\\')[-1].split('.')[0])
    # 人脸检测
    dets = detector(img, 1)
    for k, d in enumerate(dets): 
        shape = sp(img, d)
        # 提取特征
        face_descriptor = facerec.compute_face_descriptor(img, shape)
        v = numpy.array(face_descriptor) 
        descriptors.append(v)

print('识别训练完毕!')

当你做完这一步之后,输出列表descriptors看一下,可以看到类似这样的数组,每一个数组代表的就是每一张图片的特征量(128维)。然后我们可以使用L2范式(欧式距离),来计算两者间的距离。

举个例子,比如经过计算后,A的特征值是[x1,x2,x3],B的特征值是[y1,y2,y3], C的特征值是[z1,z2,z3]。

那么由于A和B更接近,所以会认为A和B更像。想象一下极端情况,如果是同一个人的两张不同照片,那么它们的特征值是不是应该会几乎接近呢?知道了这一点,就可以继续往下走了。

第三步:处理待对比的图片。

其实是同样的道理,如法炮制,目的就是算出一个特征值出来,所以和第二步差不多。然后再顺便计算出新图片和第二步中每一张图片的距离,再合成一个字典类型,排个序,选出最小值,搞定收工!

try:
##    test_path=input('请输入要检测的图片的路径(记得加后缀哦):')
    img = io.imread(r".\test_images\test6.jpg")
    dets = detector(img, 1)
except:
    print('输入路径有误,请检查!')

dist = []
for k, d in enumerate(dets):
    shape = sp(img, d)
    face_descriptor = facerec.compute_face_descriptor(img, shape)
    d_test = numpy.array(face_descriptor) 
    for i in descriptors:                #计算距离
        dist_ = numpy.linalg.norm(i-d_test)
        dist.append(dist_)

# 训练集人物和距离组成一个字典
c_d = dict(zip(candidate,dist))                
cd_sorted = sorted(c_d.items(), key=lambda d:d[1])
print ("识别到的人物最有可能是: ",cd_sorted[0][0])

这里我用了一张“断水流大师兄”林国斌的照片,识别的结果是,果然,是最接近黎明了(嘻嘻,我爱黎明)。但如果你事先在训练图像集里面有放入林国斌的照片,那么出来的结果就是林国斌了。

为什么是黎明呢?我们看一下输入图片里的人物最后与每个明星的距离,输出打印一下:

{‘刘亦菲’: 0.5269014581137407,

‘刘诗诗’: 0.4779630331578229,

‘唐艺昕’: 0.45967444611419184,

‘杨幂’: 0.4753850256188804,

‘迪丽热巴’: 0.5730399094704894,

‘郑秀妍’: 0.40740137304879187,

‘郑秀晶’: 0.45325515192940385,

‘郭富城’: 0.7624925709626963,

‘黎明’: 0.8925473299225084}

没错,他和黎明的距离是最小的,所以和他也最像了!

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

Python兼职渠道推荐

学的同时助你创收,每天花1-2小时兼职,轻松稿定生活费.
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/442312.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Day33|贪心算法part3

k次取反后最大的数组元素和 思路:贪心,局部最优,让绝对值大的负数变正数,当前数值达到最大,整体最优;整个数组和达到最大。如果把序列中所有负数都转换为正数了,k还没耗尽,就是k还大…

AWS的CISO:GenAI只是一个工具,不是万能钥匙

根据CrowdStrike的年度全球威胁报告,尽管研究人员预计人工智能将放大对防御者和攻击者的影响,但威胁参与者在其行动中使用人工智能的程度有限。该公司上个月在报告中表示:“在整个2023年,很少观察到GenAI支持恶意计算机网络运营的开发和/或执行。” 对于GenAI在网络安全中的…

Python:在 Ubuntu 上安装 pip的方法

目录 1、检测是否已安装pip 2、更新软件源 3、安装 4、检测是否安装成功 pip和pip3都是Python包管理工具,用于安装和管理Python包。 在Ubuntu上,pip和pip3是分别针对Python2和Python3版本的pip工具。 pip3作用:自动下载安装Python的库文…

2024年HW技术总结

我们都知道, 护网行动 是国家应对网络安全问题所做的重要布局之一。至今已经是8个年头了,很多公司在这时候人手不够,因此不得不招募一些网安人员来参加护网。 红队 扮演攻击的角色,蓝队 扮演防守、溯源的角色,紫队当然…

Java 的 System 类常用方法介绍

Java 中的 System 类是一个final类,它提供了与系统相关的属性和方法。它是一个内置的类,可以直接使用,不需要实例化。System 类提供了标准输入、标准输出和错误输出流,以及对外部定义的属性和系统环境的访问。下面是 System 类的一…

如何在Android 上查找恢复删除/隐藏的照片?5 个值得尝试的方法分享

Android 设备上的删除/隐藏图像有多种用途,无论是保护隐私还是优化存储空间。然而,在某些情况下,用户可能由于意外隐藏、删除或仅仅是出于好奇而需要取消删除/隐藏这些照片。在这种情况下,了解如何在 Android 上查找删除/隐藏的照…

Sora的新商业视角:从生态构建到未来产业协同

在科技飞速发展的当下,人工智能与机器学习不仅重塑了我们的生活方式,还深刻地改变了商业模式的构建方式。Sora,作为一款前沿的AI视频生成工具,其盈利路径和未来产业协同的可能性值得深入探讨。 Sora学习资料:使用方式…

LabVIEW智能Modbus监控系统

LabVIEW智能Modbus监控系统 在自动化和信息化迅速发展下,传统的监控系统已无法满足现代工业对于数据通讯和处理的高效率和高可靠性要求。为了解决这一问题,设计了一套基于LabVIEW的智能Modbus监控系统。该系统利用LabVIEW的图形化编程环境和Modbus协议的…

Java jdk 21 安装

下载软件 https://www.oracle.com/hk/java/technologies/downloads/#jdk21-windows x64 MSI Installer: https://download.oracle.com/java/21/latest/jdk-21_windows-x64_bin.msi 获取JRE 用旧版Java的,不一定会知道这一个步骤 创建JRE命令&#xff…

【牛客】VL76 任意奇数倍时钟分频

描述 编写一个模块,对输入的时钟信号clk_in,实现任意奇数分频,要求分频之后的时钟信号占空比为50%。模块应包含一个参数,用于指定分频的倍数。 模块的接口信号图如下: 要求:使用Verilog HDL语言实现&#…

初阶数据结构之---二叉树的顺序结构-堆

引言 今天要讲的堆,不是操作系统虚拟进程地址空间中(malloc,realloc等开空间的位置)的那个堆,而是数据结构中的堆,它们虽然名字相同,却是截然不同的两个概念。堆的底层其实是完全二叉树&#x…

electron 程序与安装包图标放大与制作

原因 electron-builder 在打包时需要最小支持到256x256像素的icon图标。原有历史图标都太小了。需要尝试将图标放大。 工具 convertio.co/zh/ico-png/ 在线ico转png网站 https://github.com/upscayl/upscayl 图片放大工具 csdn下载 greenfish-icon-editor-pro.en.softonic.c…

Tomcat 的安装(详细教程)

目录 一、概述二、安装前准备三、Windows 安装1. 方式一2. 方式二 一、概述 官网:https://tomcat.apache.org/ Tomcat 是一个免费的、开放源代码的 Web 应用服务器,属于轻量级应用服务器,由 Apache、Sun 和一些公司以及个人共同开发而成&…

【MapReduce】03.MapReduce框架原理

目录 1.InputFormat数据输入 1.1.切片与MapTask并行度决定机制 1.2.Job提交流程源码和切片源码 1.3.FileInputFormat切片机制 1.4.TextInputFormat 1.5.CombineTextInputFormat切片机制 1.6.CombineTextInputFormat 1.InputFormat数据输入 1.1.切片与MapTask并行度决定…

Qt开发QHostInfo主机地址查询组件

Qt 是一个跨平台C图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍如何运用QHostInfo组件实现对主机地址查询功能…

IP地址:现代网络通信的基础

IP地址(Internet Protocol Address)是指互联网协议地址,又译为网际协议地址。它是IP协议提供的一种统一的地址格式,为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。这种地址形式使得互…

第九篇 – 过程发现(Process Discovery)是如何赋能数字化市场营销全过程?- 我为什么要翻译介绍美国人工智能科技巨头IAB公司

IAB平台,使命和功能 IAB成立于1996年,总部位于纽约市。 作为美国的人工智能科技巨头社会媒体和营销专业平台公司,互动广告局(IAB- the Interactive Advertising Bureau)自1996年成立以来,先后为700多家媒体…

【Python】成功解决AttributeError: ‘MyClass‘ object has no attribute ‘my_attribute‘

【Python】成功解决AttributeError: ‘MyClass’ object has no attribute ‘my_attribute’ 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门…

魅力女神节•巾帼绽芳华 | 联诚发开展三八国际妇女节慰问活动

为进一步丰富女职工精神文化生活,展现新时代巾帼风采,弘扬积极向上、奋勇争先的精神风貌。3月8日,联诚发LCF开展了三八妇女节慰问活动,为全体女职工送上温馨的祝福和节日的问候。 清晨,活动现场便已经装饰一新&#xf…

【kerberos】hadoop集群使用keytab认证的逻辑

一、背景: haoop的kerberos认证核心是org.apache.hadoop.security.UserGroupInformation类。 UserGroupInformation一般有两种:(1)apache原生的(2)cdh hdp改良过的,即cloudera改良过的。 由此衍…