【Hadoop大数据技术】——Hadoop概述与搭建环境(学习笔记)

📖 前言:随着大数据时代的到来,大数据已经在金融、交通、物流等各个行业领域得到广泛应用。而Hadoop就是一个用于处理海量数据的框架,它既可以为海量数据提供可靠的存储;也可以为海量数据提供高效的处理。

在这里插入图片描述


目录

  • 🕒 1. 大数据概述
  • 🕒 2. Hadoop概述
    • 🕘 2.1 Hadoop前世今生
    • 🕘 2.2 Hadoop优缺点
    • 🕘 2.3 Hadoop生态
    • 🕘 2.4 Hadoop架构变迁
  • 🕒 3. 部署Hadoop
    • 🕘 3.1 创建hadoop用户
    • 🕘 3.2 更新apt
    • 🕘 3.3 安装SSH、配置SSH无密码登陆
    • 🕘 3.4 安装Java环境
    • 🕘 3.5 安装 Hadoop3.3.5
    • 🕘 3.6 Hadoop单机配置(非分布式)
    • 🕘 3.7 Hadoop伪分布式配置
    • 🕘 3.8 运行Hadoop伪分布式实例
    • 🕘 3.9 安装Hadoop集群

🕒 1. 大数据概述

大数据是来源于众多不同数据源的集合,通常由5个特征来描述,包括大量(Volume)、真实(Veracity)、多样(Variety)、低价值密度(Value)和高速(Velocity),这5个特征称为大数据的5V特征。

旧版教材定义(4V):
在这里插入图片描述

研究大数据最重要的意义是预测

🕒 2. Hadoop概述

🕘 2.1 Hadoop前世今生

在这里插入图片描述

🕘 2.2 Hadoop优缺点

优点:低成本、高可靠性、高容错性、高效率、高扩展性
缺点:不适合处理小文件、无法实时计算、安全性较低

🕘 2.3 Hadoop生态

随着Hadoop的不断发展,Hadoop生态体系越来越完善,现如今已经发展成一个庞大的生态体系。
在这里插入图片描述

  • HDFS分布式文件系统:HDFS是Hadoop的分布式文件系统,它是Hadoop生态系统中的核心项目之一,是分布式计算中数据存储管理基础。
  • MapReduce分布式计算框架:MapReduce是一种计算模型,用于大规模数据集(大于1TB)的并行运算
  • Yarn资源管理框架:Yarn(Yet Another Resource Negotiator)是Hadoop 2.0中的资源管理器,它可为上层应用提供统一的资源管理调度
  • Sqoop数据迁移工具:Sqoop是一款开源的数据导入导出工具,主要用于在Hadoop与传统的数据库间进行数据转换
  • Mahout数据挖掘算法库:Mahout是Apache旗下的一个开源项目,它提供了一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员方便快捷地创建智能应用程序
  • HBase分布式存储系统:HBase是Google Bigtable克隆版,它是一个针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库
  • Zookeeper分布式协作服务:Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和HBase的重要组件
  • Hive基于Hadoop的数据仓库:Hive是基于Hadoop的一个分布式数据仓库工具,可以将结构化的数据文件映射为一张数据库表,将SQL语句转换为MapReduce任务进行运行。
  • Flume日志收集工具:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

🕘 2.4 Hadoop架构变迁

Hadoop共发行了三个版本,分别是Hadoop 1.x、Hadoop 2.x和Hadoop 3.x。

在这里插入图片描述

Hadoop1.0内核主要由分布式存储系统HDFS和分布式计算框架MapReduce两个系统组成,而Hadoop2.x版本主要新增了资源管理框架Yarn以及其他工作机制的改变。

Hadoop 3.x是基于JDK1.8开发的,较其他两个版本而言,在功能和优化方面发生了很大的变化,其中包括HDFS 可擦除编码、多Namenode支持、MR Native Task优化等。

🕒 3. 部署Hadoop

🔎 Hadoop3.3.5安装教程_单机/伪分布式配置_Hadoop3.3.5/Ubuntu22.04

环境:VMware 16.2.3、Ubuntu 22.04 64位、hadoop-3.3.5

🔎 Hadoop大数据课程软件 提取码: 09oy

一般而言,开展大数据实验,需要在虚拟机中安装各种大数据软件,至少需要消耗40GB磁盘空间,因此,建议把磁盘空间设置为50GB~100GB,且内存为4G以上。

以下是已安装的Ubuntu扩容方法:
在这里插入图片描述

随后打开Ubuntu进行设置:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

🕘 3.1 创建hadoop用户

如果你安装 Ubuntu 的时候不是用的 “hadoop” 用户,那么需要增加一个名为 hadoop 的用户。

首先按 ctrl+alt+t 打开终端窗口,输入如下命令创建新用户 :

sudo useradd -m hadoop -s /bin/bash

这条命令创建了可以登陆的 hadoop 用户,并使用 /bin/bash 作为 shell。

Ubuntu终端复制粘贴快捷键:在Ubuntu终端窗口中,复制粘贴的快捷键需要加上 shift,即粘贴是 ctrl+shift+v

接着使用如下命令设置密码,可简单设置为 hadoop,按提示输入两次密码:

sudo passwd hadoop

可为 hadoop 用户增加管理员权限,方便部署

sudo adduser hadoop sudo

最后注销当前用户,返回登陆界面。在登陆界面中选择刚创建的 hadoop 用户进行登陆。

🕘 3.2 更新apt

用 hadoop 用户登录后,我们先更新一下 apt,后续我们使用 apt 安装软件,如果没更新可能有一些软件安装不了。按 ctrl+alt+t 打开终端窗口,执行如下命令:

sudo apt-get update

后续需要更改一些配置文件,建议使用 vim 。

sudo apt-get install vim

🔎 【Linux详解】——yum与vim的基本使用

🕘 3.3 安装SSH、配置SSH无密码登陆

集群、单节点模式都需要用到 SSH 登陆(类似于远程登陆,你可以登录某台 Linux 主机,并且在上面运行命令),Ubuntu 默认已安装了 SSH client,此外还需要安装 SSH server:

sudo apt-get install openssh-server

安装后,可以使用如下命令登陆本机:

ssh localhost

此时会有如下提示(SSH首次登陆提示),输入 yes 。然后按提示输入密码 hadoop,这样就登陆到本机了。

在这里插入图片描述

但这样登陆是需要每次输入密码的,我们需要配置成SSH无密码登陆比较方便。

首先退出刚才的 ssh,就回到了我们原先的终端窗口,然后利用 ssh-keygen 生成密钥,并将密钥加入到授权中:

hadoop@Hins-vm:~$ exit		# 退出刚才的 ssh localhost
注销
Connection to localhost closed.
hadoop@Hins-vm:~/Desktop$ cd ~/.ssh/		# 若没有该目录,请先执行一次ssh localhost
hadoop@Hins-vm:~/.ssh$ ssh-keygen -t rsa	# 会有提示,都按回车就可以
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hadoop/.ssh/id_rsa): 
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /home/hadoop/.ssh/id_rsa
Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:OhgJuRKQaCQF6TcJroolvsUdd4CX35H8cAOk1cS8HIU hadoop@Hins-vm
The key's randomart image is:
+---[RSA 3072]----+
|**.       .+=.o. |
|*o .  . . + oE   |
|= + .. + . =.oo  |
| + * .. o . =o.  |
|o o +. .So . .   |
|o.o .oo..        |
|+o o..o          |
|o..    .         |
| ..              |
+----[SHA256]-----+
hadoop@Hins-vm:~/.ssh$ cat ./id_rsa.pub >> ./authorized_keys		# 加入授权

此时再用 ssh localhost 命令,无需输入密码就可以直接登陆了。

🕘 3.4 安装Java环境

Hadoop3.3.5需要JDK版本在1.8及以上。需要按照下面步骤来自己手动安装JDK1.8。

我们需要从windows向虚拟机上面安装的ubuntu进行大数据文件的传输,这时候,我们不能通过VMTools来进行传输,否则会导致VM工具的错误,所以,这时候我们需要一个第三方的软件,来进行大数据文件的传输。这里选择FileZilla。

首先在Windows端下载FileZilla,安装打开后,输入下面四个框的信息进行连接

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

可以看到,该压缩文件已经保存在“/home/hadoop/Downloads”目录下。

在Linux命令行界面中,执行如下Shell命令(注意:当前登录用户名是hadoop):

hadoop@Hins-vm:~$ cd /usr/lib
hadoop@Hins-vm:/usr/lib$ sudo mkdir jvm		# 创建/usr/lib/jvm目录用来存放JDK文件
[sudo] hadoop 的密码: 
hadoop@Hins-vm:/usr/lib$ cd ~				# 进入hadoop用户的主目录
hadoop@Hins-vm:~$ cd Downloads				# 注意区分大小写字母,刚才已经通过FTP软件把JDK安装包传到该目录下
hadoop@Hins-vm:~/Downloads$ ls
jdk-8u371-linux-x64.tar.gz
# 把JDK文件解压到/usr/lib/jvm目录下
hadoop@Hins-vm:~/Downloads$ sudo tar -zxvf ./jdk-8u371-linux-x64.tar.gz -C /usr/lib/jvm

JDK文件解压缩以后,可以执行如下命令到/usr/lib/jvm目录查看一下:

hadoop@Hins-vm:~/Downloads$ cd /usr/lib/jvm
hadoop@Hins-vm:/usr/lib/jvm$ ls
jdk1.8.0_371

可以看到,在/usr/lib/jvm目录下有个jdk1.8.0_371目录。
下面继续执行如下命令,设置环境变量:

hadoop@Hins-vm:/usr/lib/jvm$ cd ~
hadoop@Hins-vm:~$ vim ~/.bashrc

上面命令使用vim编辑器打开了hadoop这个用户的环境变量配置文件,请在这个文件的开头位置,添加如下几行内容:

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_371
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH

先按i进入插入模式,后使用 ctrl+shift+v粘贴,随后按ESC,输入:wq保存退出。

保存.bashrc文件并退出vim编辑器。然后,继续执行如下命令让.bashrc文件的配置立即生效:

source ~/.bashrc

这时,可以使用如下命令查看是否安装成功:

hadoop@Hins-vm:~/Downloads$ java -version
java version "1.8.0_371"
Java(TM) SE Runtime Environment (build 1.8.0_371-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.371-b11, mixed mode)

至此,就成功安装了Java环境。下面就可以进入Hadoop的安装。

🕘 3.5 安装 Hadoop3.3.5

我们选择将 Hadoop 安装至 /usr/local/ 中:

sudo tar -zxvf ~/Downloads/hadoop-3.3.5.tar.gz -C /usr/local   # 解压到/usr/local中
cd /usr/local/
sudo mv ./hadoop-3.3.5/ ./hadoop    # 将文件夹名改为hadoop
sudo chown -R hadoop ./hadoop       # 修改文件权限

Hadoop 解压后即可使用。输入如下命令来检查 Hadoop 是否可用,成功则会显示 Hadoop 版本信息:

hadoop@Hins-vm:/usr/local$ cd /usr/local/hadoop
hadoop@Hins-vm:/usr/local/hadoop$ ./bin/hadoop version
Hadoop 3.3.5
Source code repository https://github.com/apache/hadoop.git -r 706d88266abcee09ed78fbaa0ad5f74d818ab0e9
Compiled by stevel on 2023-03-15T15:56Z
Compiled with protoc 3.7.1
From source with checksum 6bbd9afcf4838a0eb12a5f189e9bd7
This command was run using /usr/local/hadoop/share/hadoop/common/hadoop-common-3.3.5.jar

🕘 3.6 Hadoop单机配置(非分布式)

Hadoop集群三种部署模式

  • 独立模式:一种在单台计算机的单个JVM进程中模拟Hadoop集群的工作模式,此模式部署的Hadoop通常用于快速安装体验Hadoop的功能,并不适用于实际生产环境。
  • 伪分布式模式:一种在单台计算机的不同JVM进程中运行Hadoop集群的工作模式,此模式部署的Hadoop通常用于在开发环境中进行测试和调试,并不适用于实际生产环境。
  • 完全分布式模式:一种在多台计算机的JVM进程中运行Hadoop集群的工作模式,Hadoop集群的每个守护进程都运行在不同的计算机中,此模式部署的Hadoop通常作为实际生产环境的基础

Hadoop 默认模式为非分布式模式(独立模式),无需进行其他配置即可运行。非分布式即单 Java 进程,方便进行调试。

现在我们可以执行例子来感受下 Hadoop 的运行。Hadoop 附带了丰富的例子(运行 ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar 可以看到所有例子),包括 wordcount、terasort、join、grep 等。

在此我们选择运行 grep 例子,我们将 input 文件夹中的所有文件作为输入,筛选当中符合正则表达式 dfs[a-z.]+ 的单词并统计出现的次数,最后输出结果到 output 文件夹中。

cd /usr/local/hadoop
mkdir ./input
cp ./etc/hadoop/*.xml ./input   # 将配置文件作为输入文件
./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar grep ./input ./output 'dfs[a-z.]+'
cat ./output/*          # 查看运行结果

执行成功后如下所示,输出了作业的相关信息,输出的结果是符合正则的单词 dfsadmin 出现了1次

在这里插入图片描述

注意,Hadoop 默认不会覆盖结果文件,因此再次运行上面实例会提示出错,需要先将 ./output 删除。

rm -r ./output

🕘 3.7 Hadoop伪分布式配置

Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件。

Hadoop 的配置文件位于 /usr/local/hadoop/etc/hadoop/ 中,伪分布式需要修改2个配置文件 core-site.xmlhdfs-site.xml 。Hadoop的配置文件是 xml 格式,每个配置以声明 property 的 name 和 value 的方式来实现。

修改配置文件 core-site.xml

gedit ./etc/hadoop/core-site.xml

将当中的

<configuration>
</configuration>

修改为下面配置:

<configuration>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/usr/local/hadoop/tmp</value>
        <description>Abase for other temporary directories.</description>
    </property>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

同样的,修改配置文件 hdfs-site.xml

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/usr/local/hadoop/tmp/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/usr/local/hadoop/tmp/dfs/data</value>
    </property>
</configuration>

Hadoop配置文件说明:

Hadoop 的运行方式是由配置文件决定的(运行 Hadoop 时会读取配置文件),因此如果需要从伪分布式模式切换回非分布式模式,需要删除 core-site.xml 中的配置项。

此外,伪分布式虽然只需要配置 fs.defaultFS 和 dfs.replication 就可以运行(官方教程如此),不过若没有配置 hadoop.tmp.dir 参数,则默认使用的临时目录为 /tmp/hadoo-hadoop,而这个目录在重启时有可能被系统清理掉,导致必须重新执行 format 才行。所以我们进行了设置,同时也指定 dfs.namenode.name.dir 和 dfs.datanode.data.dir,否则在接下来的步骤中可能会出错。

配置完成后,执行 NameNode 的格式化:

cd /usr/local/hadoop
./bin/hdfs namenode -format

成功的话,会看到 “successfully formatted” 的提示
在这里插入图片描述

接着开启 NameNode 和 DataNode 守护进程。

cd /usr/local/hadoop
./sbin/start-dfs.sh  # start-dfs.sh是个完整的可执行文件,中间没有空格

在这里插入图片描述

启动完成后,可以通过命令 jps 来判断是否成功启动,若成功启动则会列出如下进程: “NameNode”、“DataNode” 和 “SecondaryNameNode”(如果 SecondaryNameNode 没有启动,请运行 sbin/stop-dfs.sh 关闭进程,然后再次尝试启动尝试)。如果没有 NameNode 或 DataNode ,那就是配置不成功,请仔细检查之前步骤,或通过查看启动日志排查原因。

在这里插入图片描述

成功启动后,可以访问 Web 界面 http://localhost:9870 查看 NameNode 和 Datanode 信息,还可以在线查看 HDFS 中的文件。

在这里插入图片描述

🕘 3.8 运行Hadoop伪分布式实例

上面的单机模式,grep 例子读取的是本地数据,伪分布式读取的则是 HDFS 上的数据。要使用 HDFS,首先需要在 HDFS 中创建用户目录:

./bin/hdfs dfs -mkdir -p /user/hadoop

接着将 ./etc/hadoop 中的 xml 文件作为输入文件复制到分布式文件系统中,即将 /usr/local/hadoop/etc/hadoop 复制到分布式文件系统中的 /user/hadoop/input 中。我们使用的是 hadoop 用户,并且已创建相应的用户目录 /user/hadoop ,因此在命令中就可以使用相对路径如 input,其对应的绝对路径就是 /user/hadoop/input:

./bin/hdfs dfs -mkdir input
./bin/hdfs dfs -put ./etc/hadoop/*.xml input

复制完成后,可以通过如下命令查看文件列表:

hadoop@Hins-vm:/usr/local/hadoop$ ./bin/hdfs dfs -ls input
Found 10 items
-rw-r--r--   1 hadoop supergroup       9213 2024-03-05 00:39 input/capacity-scheduler.xml
-rw-r--r--   1 hadoop supergroup       1075 2024-03-05 00:39 input/core-site.xml
-rw-r--r--   1 hadoop supergroup      11765 2024-03-05 00:39 input/hadoop-policy.xml
-rw-r--r--   1 hadoop supergroup        683 2024-03-05 00:39 input/hdfs-rbf-site.xml
-rw-r--r--   1 hadoop supergroup       1133 2024-03-05 00:39 input/hdfs-site.xml
-rw-r--r--   1 hadoop supergroup        620 2024-03-05 00:39 input/httpfs-site.xml
-rw-r--r--   1 hadoop supergroup       3518 2024-03-05 00:39 input/kms-acls.xml
-rw-r--r--   1 hadoop supergroup        682 2024-03-05 00:39 input/kms-site.xml
-rw-r--r--   1 hadoop supergroup        758 2024-03-05 00:39 input/mapred-site.xml
-rw-r--r--   1 hadoop supergroup        690 2024-03-05 00:39 input/yarn-site.xml

伪分布式运行 MapReduce 作业的方式跟单机模式相同,区别在于伪分布式读取的是HDFS中的文件(可以将单机步骤中创建的本地 input 文件夹,输出结果 output 文件夹都删掉来验证这一点)。

./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar grep input output 'dfs[a-z.]+'

查看运行结果的命令(查看的是位于 HDFS 中的输出结果):

./bin/hdfs dfs -cat output/*

结果如下,注意到刚才我们已经更改了配置文件,所以运行结果不同。

在这里插入图片描述

我们也可以将运行结果取回到本地:

rm -r ./output    # 先删除本地的 output 文件夹(如果存在)
./bin/hdfs dfs -get output ./output     # 将 HDFS 上的 output 文件夹拷贝到本机
cat ./output/*

Hadoop 运行程序时,输出目录不能存在,否则会提示错误 “org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://localhost:9000/user/hadoop/output already exists” ,因此若要再次执行,需要执行如下命令删除 output 文件夹:

./bin/hdfs dfs -rm -r output    # 删除 output 文件夹

在实际开发应用程序时,可考虑在程序中加上如下代码,能在每次运行时自动删除输出目录,避免繁琐的命令行操作:

Configuration conf = new Configuration();
Job job = new Job(conf);
 
/* 删除输出目录 */
Path outputPath = new Path(args[1]);
outputPath.getFileSystem(conf).delete(outputPath, true);

若要关闭 Hadoop,则运行

./sbin/stop-dfs.sh

注意:下次启动 hadoop 时,无需进行 NameNode 的初始化,只需要运行 ./sbin/start-dfs.sh 就可以!

🕘 3.9 安装Hadoop集群

在平时的学习中,我们使用伪分布式就足够了。如果需要安装 Hadoop 集群,可查看🔎 Hadoop集群安装配置教程(Hadoop3.3.5)。


OK,以上就是本期知识点“Hadoop概述与搭建环境”的知识啦~~ ,感谢友友们的阅读。后续还会继续更新,欢迎持续关注哟📌~
💫如果有错误❌,欢迎批评指正呀👀~让我们一起相互进步🚀
🎉如果觉得收获满满,可以点点赞👍支持一下哟~

❗ 转载请注明出处
作者:HinsCoder
博客链接:🔎 作者博客主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/441782.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32 通过Modbus协议更改内部Flash(模仿EEPROM)的运行参数

main.c测试 uint8_t uart1RxBuf[64]{0};uint8_t Adc1ConvEnd0; uint8_t Adc2ConvEnd0;int main(void) {/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initial…

docker学习入门

1、docker简介 docker官网&#xff1a; www.docker.com dockerhub官网&#xff1a; hub.docker.com docker文档官网&#xff1a;docs.docker.com Docker是基于Go语言实现的云开源项目。 Docker的主要目标是&#xff1a;Build, Ship and Run Any App, Anywhere(构建&…

Java面试——Netty

优质博文&#xff1a;IT-BLOG-CN 一、BIO、NIO 和 AIO 【1】阻塞 IO(Blocking I/O)&#xff1a; 同步阻塞I/O模式&#xff0c;当一条线程执行 read() 或者 write() 方法时&#xff0c;这条线程会一直阻塞直到读取一些数据或者写出去的数据已经全部写出&#xff0c;在这期间这条…

iOS——【自动引用计数】ARC规则及实现

1.3.3所有权修饰符 所有权修饰符一共有四种&#xff1a; __strong 修饰符__weak 修饰符__undafe_unretained 修饰符__autoreleasing 修饰符 __strong修饰符 _strong修饰符表示对对象的强引用&#xff0c;持有强引用的变量在超出其作用域的时候会被废弃&#xff0c;随着强引…

Kafka入门及生产者详解

1. Kafka定义 传统定义&#xff1a;分布式的、基于发布/订阅模式的消息队列&#xff0c;主要用于大数据实时处理领域。发布/订阅模式中&#xff0c;发布者不会直接将消息发送给特定的订阅者&#xff0c;而是将发布的消息分为不同的类别&#xff0c;订阅者只接受感兴趣的消息。…

html--心动

代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>html</title><style>*{padding: 0;margin: 0;}body{background-color: pink;}#frame{position: relative;width: 400px;height: 300…

【项目】Boost 搜索引擎

文章目录 1.背景2.宏观原理3.相关技术与开发环境4. 实现原理1.下载2.加载与解析文件2.1获取指定目录下的所有网页文件2.2. 获取网页文件中的关键信息2.3. 对读取文件进行保存 3.索引3.1正排与倒排3.2获取正排和倒排索引3.3建立索引3.3.1正排索引3.3.2倒排索引 4.搜索4.1 初始化…

练习3-softmax分类(李沐函数简要解析)与d2l.train_ch3缺失的简单解决方式

环境为:练习1的环境 网址为:https://www.bilibili.com/video/BV1K64y1Q7wu/?spm_id_from333.1007.top_right_bar_window_history.content.click 代码简要解析 导入模块 导入PyTorch 导入Torch中的nn模块 导入d2l中torch模块 并命名为d2l import torch from torch import nn…

pytorch CV入门3-预训练模型与迁移学习.md

专栏链接&#xff1a;https://blog.csdn.net/qq_33345365/category_12578430.html 初次编辑&#xff1a;2024/3/7&#xff1b;最后编辑&#xff1a;2024/3/8 参考网站-微软教程&#xff1a;https://learn.microsoft.com/en-us/training/modules/intro-computer-vision-pytorc…

【Linux】文件周边003之文件系统

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 1.磁盘引入 2.文件系统 …

构建留学平台技术架构:从设计到实现

随着全球化进程的加速和人们对国际教育的需求不断增长&#xff0c;留学行业也迎来了快速发展的机遇。作为留学服务的重要组成部分&#xff0c;留学平台的技术架构设计至关重要。本文将探讨留学平台技术架构的设计和实现过程&#xff0c;以及相关的技术选择、挑战和解决方案。 …

NodeJS实现堆排序算法

NodeJS实现堆排序算法 以下是使用 Node.js 实现堆排序算法的示例代码&#xff1a; // 堆排序函数 function heapSort(arr) {// 构建最大堆buildMaxHeap(arr);// 依次取出最大堆的根节点&#xff08;最大值&#xff09;&#xff0c;并调整堆结构for (let i arr.length - 1; i…

18、电源管理入门之Power Domain管理

目录 1. 框架介绍 2. 如何使用power domain 3. provider 4. Consumer 参考: SoC中通常有很多IP,按逻辑可以把几个相关功能的IP划为一个电源域。一个电源域内的IP,通常按相同的方式由同一个硬件模块PMIC供电,电压一样并且电源管理例如休眠唤醒一致。 为什么有设备电源管…

HTML5+CSS3+JS小实例:暗紫色Tabbar

实例:暗紫色Tabbar 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"><head><meta charset="UTF-8" /><meta name="viewport" content="width=device-width, initial-scal…

Java项目:基于SSM框架实现的二手车交易平台【源码+开题报告+任务书+毕业论文+答辩ppt】

一、项目简介 本项目是一套基于SSM框架实现的二手车交易平台 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功能齐…

746. 使用最小花费爬楼梯 (Swift版本)

题目 给你一个整数数组 cost&#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 限制条件 2…

智能合约语言(eDSL)—— proc_macro实现合约init函数

我们通过属性宏来实现合约的init函数&#xff0c;call函数其实和init是类似的&#xff1b; GitHub - XuHugo/xwasm 构建属性宏&#xff0c;要在cargo.toml里面设置一些参数&#xff0c;这是必须的。一般来说&#xff0c;过程宏必须是一个库&#xff0c;或者作为工程的子库&…

【Git】项目源码迁移到另一个gitlab(保留原来提交历史记录)

目录 前情提要迁移方案IDEA远程仓库管理团队其他成员切换gitgit命令操作界面 前情提要 公司原来是自己私有部署的gitlab。有了研发云后就希望将代码推送到研发云的代码仓库上。这时候需要迁移并保留原来提交的历史记录。 迁移方案 登录新的gitlab(代码仓库)新建空白项目获取…

DEAP:利用生理信号进行情绪分析的数据库【DEAP数据集】

文章目录 摘要引言刺激选择实验环境参与者步骤参与者自我评估 主观评价分析EEG频率与参与者评分之间的相关性单次试验分类结果 结论 点击下载原文 摘要 ● DEAP&#xff1a;用于分析人类情感状态的多模态数据集。 ● 32名参与者观看了40个一分钟长的音乐视频。 ● 参与者根据唤…

Postman(注册,使用,作用)【详解】

目录 一、Postman 1. Postman介绍 2. 安装Postman 3. 注册帐号再使用(可保存测试记录) 4. 创建workspace 5. 测试并保存测试记录 一、Postman postman工具可以发送不同方式的请求,浏览器只能发送get请求(所有用这个工具) 在前后端分离开发模式下&#xff0c;前端技术人员…