疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

目录

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

1.疲劳驾驶检测和识别方法

2.疲劳驾驶数据集

 (1)疲劳驾驶数据集说明

 (2)自定义数据集

3.人脸检测模型

4.疲劳驾驶分类模型训练

(1)项目安装

(2)准备数据

(3)疲劳驾驶识别分类模型训练(Pytorch)

(4) 可视化训练过程

(5) 疲劳驾驶识别效果

(6) 一些优化建议

(7) 一些运行错误处理方法

5.项目源码下载(Python版)

6. C++实现疲劳驾驶检测识别

7. Android实现疲劳驾驶检测识别


这是项目《疲劳驾驶检测和识别》系列之《Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)》;项目基于深度学习框架Pytorch开发一个高精度,可实时疲劳驾驶检测和识别算法;项目源码支持模型有resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,用户也可以自定义自己的模型进行训练;项目源码配套了完整的训练代码和数据集,配置好开发环境,即可开始训练。

准确率还挺高的,采用轻量级mobilenet_v2模型的疲劳驾驶识别准确率也可以高达97.8682%左右,满足业务性能需求。

模型input sizeTest准确率
mobilenet_v2112×11297.8682
googlenet112×11298.4496
resnet18112×11298.2558

先展示一下,Python版本的疲劳驾驶检测和识别Demo效果

 

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/131834946


更多项目《疲劳驾驶检测和识别》系列文章请参考:

  1. 疲劳驾驶检测和识别1: 疲劳驾驶检测和识别数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/131718648
  2. 疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)https://blog.csdn.net/guyuealian/article/details/131834946
  3. 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

  4. 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980


1.疲劳驾驶检测和识别方法

疲劳驾驶检测和识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+疲劳驾驶分类识别方法,即先采用通用的人脸检测模型,进行人脸检测定位人体区域,然后按照一定规则裁剪人脸检测区域,再训练一个疲劳驾驶行为识别分类器,完成疲劳驾驶检测和识别任务;

这样做的好处,是可以利用现有的人脸检测模型进行人脸检测,而无需重新标注疲劳驾驶的人脸检测框,可减少人工标注成本低;而疲劳驾驶分类数据相对而言比较容易采集,分类模型可针对性进行优化。

当然,也可以直接基于目标检测的方法直接检测疲劳驾驶和非疲劳驾驶,项目也提供了疲劳驾驶目标检测的数据集


2.疲劳驾驶数据集

 (1)疲劳驾驶数据集说明

在疲劳驾驶检测和识别算法开发中,我们需要定义疲劳驾驶的行为状态,项目将疲劳驾驶状态分为两个状态,分别为:疲劳(drowsy),不疲劳(undrowsy),为了便于大家理解,这里给出这两个状态的图示说明

  • 疲劳(drowsy): 如果驾驶过程中出现闭眼,打哈欠等疲劳困倦等表情动作,则认为是疲劳驾驶(drowsy)
  • 不疲劳(undrowsy):正常情况下,没有出现闭眼,打哈欠的表情动作,则认为是清醒状态,即非疲劳状态(undrowsy)

关于疲劳驾驶数据集的使用说明请参考我的一篇博客: https://blog.csdn.net/guyuealian/article/details/131718648

项目提供了疲劳驾驶检测数据集和疲劳驾驶分类数据集,由于我们的实现方案采用基于人脸检测+疲劳驾驶分类识别方法,因此模型训练只使用了疲劳驾驶分类数据集:Drowsy-Driving-Cls1,Drowsy-Driving-Cls2;疲劳驾驶检测数据集并未使用。

 (2)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可参考如下进行处理:

  • 建立Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

  • 类别文件:一行一个列表:​class_name.txt​
     (最后一行,请多回车一行)
A
B
C
D

  • 修改配置文件的数据路径:configs/​config.yaml​
train_data: # 可添加多个数据集
  - 'data/dataset/train1' 
  - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
...

3.人脸检测模型

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

当然可以基于YOLOv5训练一个人脸检测模型:人脸检测和行人检测2:YOLOv5实现人脸检测和行人检测(含数据集和训练代码)


4.疲劳驾驶分类模型训练

准备好疲劳驾驶识别数据后,接下来就可以开始训练疲劳驾驶识别分类模型了;项目模型支持resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,考虑到后续我们需要将疲劳驾驶识别模型部署到Android平台中,因此项目选择计算量比较小的轻量化模型mobilenet_v2;如果不用端上部署,完全可以使用参数量更大的模型,如resnet50等模型。

 整套工程项目基本结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
│   ├── convert                # 将模型转换为ONNX工具
│   ├── light_detector         # 人脸检测
│   ├── detector.py            # 人脸检测demo
│   └── README.md               
├── demo.py              # demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

(1)项目安装

 项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备数据

下载疲劳驾驶分类数据集:Drowsy-Driving-Cls1,Drowsy-Driving-Cls2,然后解压

 关于疲劳驾驶数据集的使用说明请参考我的一篇博客: https://blog.csdn.net/guyuealian/article/details/131718648

(3)疲劳驾驶识别分类模型训练(Pytorch)

项目在《Pytorch基础训练库Pytorch-Base-Trainer(支持模型剪枝 分布式训练)》基础上实现了疲劳驾驶识别分类模型训练和测试,整套训练代码非常简单操作,用户只需要将相同类别的图片数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

训练框架采用Pytorch,整套训练代码支持的内容主要有:

  • 目前支持的backbone有:googlenet,resnet[18,34,50], ,mobilenet_v2等, 其他backbone可以自定义添加
  • 训练参数可以通过(configs/config.yaml)配置文件进行设置

修改配置文件的数据路径:configs/​config.yaml​

  • train_data和test_data修改为自己的数据路径
  • 注意数据路径分隔符使用【/】,不是【\】
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
# 训练数据集,可支持多个数据集(不要出现中文路径)
train_data:
  - 'path/to/Drowsy-Driving-Cls1/trainval'
  - 'path/to/Drowsy-Driving-Cls2/trainval'
# 测试数据集(不要出现中文路径)
test_data:
  - 'path/to/Drowsy-Driving-Cls1/test'

# 类别文件
class_name: 'data/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "mobilenet_v2"       # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0                # 模型宽度因子
input_size: [ 112,112 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 128                # batch_size
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmooth
momentum: 0.9                  # SGD momentum
num_epochs: 120                # 训练循环次数
num_warn_up: 0                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 30,60,100 ]       # 下调学习率方式
gpu_id: [ 2 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: True               # 是否使用pretrained模型
finetune: False                # 是否进行finetune

开始训练,在终端输入: 

python train.py -c configs/config.yaml 

训练完成后,训练集的Accuracy在98.0%以上,测试集的Accuracy在97.5%左右

(4) 可视化训练过程

训练过程可视化工具是使用Tensorboard,在终端(Terminal)输入命令:

使用教程,请参考:项目开发使用教程和常见问题和解决方法

# 需要安装tensorboard==2.5.0和tensorboardX==2.1
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=tensorboard --logdir=data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/log

可视化效果 

​​​​

 ​​  

(5) 疲劳驾驶识别效果

训练完成后,训练集的Accuracy在99%以上,测试集的Accuracy在97.5%左右,下表给出已经训练好的三个模型,其中mobilenet_v2的测试集准确率可以达到97.8682%,googlenet的准确率可以达到98.4496%,resnet18的准确率可以达到98.2558%

模型input sizeTest准确率
mobilenet_v2112×11297.8682
googlenet112×11298.4496
resnet18112×11298.2558
  • 测试图片文件
# 测试图片(Linux系统)
image_dir='data/test_image' # 测试图片的目录
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --image_dir $image_dir --model_file $model_file --out_dir $out_dir

Windows系统,请将$image_dir, $model_file ,$out_dir等变量代替为对应的变量值即可,如

# 测试图片(Windows系统)
python demo.py --image_dir data/test_image --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth --out_dir output/

  • 测试视频文件
# 测试视频文件(Linux系统)
video_file="data/video-test.mp4" # 测试视频文件,如*.mp4,*.avi等
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试视频文件(Windows系统)
python demo.py --video_file data/video-test.mp4 --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth --out_dir output/

  • 测试摄像头
# 测试摄像头(Linux系统)
video_file=0 # 测试摄像头ID
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试摄像头(Windows系统)
python demo.py --video_file 0 --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth  --out_dir output/

下面是疲劳驾驶检测和识别的效果展示:

 

(6) 一些优化建议

 如果想进一步提高模型的性能,可以尝试:

  1. ​ 增加训练的样本数据: 建议根据自己的业务场景,采集相关数据,比如采集多个人的疲劳驾驶的数据,提高模型泛化能力;
  2. 使用参数量更大的模型: 本教程使用的是mobilenet_v2模型,属于比较轻量级的分类模型,采用更大的模型(如resnet50),理论上其精度更高,但推理速度也较慢。
  3. 尝试不同数据增强的组合进行训练
  4. 增加数据增强: 已经支持: 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix等更复杂的数据增强方式
  5. 样本均衡: 原始数据疲劳驾驶识别类别数据并不均衡,类别notsmoking的样本数据偏多,而smoking数据偏少,这会导致训练的模型会偏向于样本数较多的类别。建议进行样本均衡处理。
  6. 清洗数据集:原始数据已经进行人工清洗了,但依然存在一些模糊的,低质的,模棱两可的样本;建议你,在训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

(7) 一些运行错误处理方法

  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!!!!!!!!

  • cannot import name 'load_state_dict_from_url' 

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

5.项目源码下载(Python版)

项目源码下载地址:疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

整套项目源码内容包含:

  1. 提供疲劳驾驶检测数据集:包含Drowsy-Driving-Det1和Drowsy-Driving-Det1,总共13000+张图片;标注格式统一转换为VOC数据格式,其中人脸框标注了的两个状态:drowsy(疲劳),undrowsy(非疲劳),可用于深度学习疲劳驾驶目标检测模型算法开发。(本项目并未使用这个两个数据集)

  2. 提供疲劳驾驶分类数据集:包含Drowsy-Driving-Cls1,Drowsy-Driving-Cls2和Drowsy-Driving-Cls3,总共50000+张图片;所有人脸图片,都已经按照其所属类别存放于各自的文件夹下,可用于深度学习疲劳驾驶分类识别模型算法开发。(本项目主要使用Drowsy-Driving-Cls1,Drowsy-Driving-Cls2两个数据集)

  3. 提供疲劳驾驶分类模型训练代码:train.py
  4. 提供疲劳驾驶分类模型测试代码:demo.py
  5. Demo支持图片,视频和摄像头测试
  6. 支持自定义数据集进行训练
  7. 项目支持模型:resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型
  8. 项目源码自带训练好的模型文件,无需重新训练,可直接运行测试: python demo.py
  9. 在普通电脑CPU/GPU上可以实时检测和识别


6. C++实现疲劳驾驶检测识别

参考文章:疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980


7. Android实现疲劳驾驶检测识别

参考文章:疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/43870.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

系统架构设计师-软件架构设计(2)

目录 一、基于架构的软件开发方法(ABSD) 1、架构需求 1.1 需求获取 1.2 标识构件 1.3 架构需求评审 2、架构设计 2.1 提出架构模型 2.2 映射构件 2.3 分析构件的相互作用 2.4 产生架构 2.5 设计评审 3、架构文档化 4、架构复审 5、架构实现 5.1 分析与…

探寻智能化未来:AI与Web3共创金融领域巨大潜力

人工智能(AI)和Web3技术的迅猛发展为我们带来了许多新的机遇和影响。在数字经济和社会的浪潮中,结合了AI的智能化能力和Web3的去中心化与区块链技术,我们将进入一个智能化的Web3时代。人工智能和Web3技术是开拓生产力极限和重新定…

LabVIEW使用支持向量机对脑磁共振成像进行图像分类

LabVIEW使用支持向量机对脑磁共振成像进行图像分类 医学成像是用于创建人体解剖学图像以进行临床研究、诊断和治疗的技术和过程。它现在是医疗技术发展最快的领域之一。通常用于获得医学图像的方式是X射线,计算机断层扫描(CT),磁…

记录安装stable diffusion webui时,出现的gfpgan安装卡住的问题

参考链接:(145条消息) 使用stable diffusion webui时,安装gfpgan失败的解决方案(windows下的操作)_新时代原始人的博客-CSDN博客

【Seata】微服务集成seata

文章目录 1、Seata介绍2、Seata架构3、部署TC服务4、微服务集成seata 1、Seata介绍 Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。 官网http://seata.io/ 2、Seata架构 Seata事务管理有三个角色: TC (Transaction Coordinator) - 事务…

UI 自动化的 PageObject 设计模式

目录 前言: 什么是 PageObject 模型? 为什么使用 PageObject 模型? PO 模式优点 PageObject 实践 前言: UI 自动化是一种软件测试方法,它主要用于检查应用程序的用户界面是否符合预期。PageObject 是 UI 自动化中…

信息安全与网络空间安全 - 保障您的在线安全

数据参考:CISP官方 目录: 信息与信息安全 信息安全属性 网络安全发展阶段 网络空间安全保障 一、信息与信息安全 1、什么是信息? 定义:信息是通过传递和处理的方式,用于传达知识、事实、数据或观点的内容。形…

华为盘古大模型:能源领域的颠覆性突破

近日,华为盘古大模型在能源领域横空出世,引发了广泛关注和期待。作为一项具有颠覆性影响的技术创新,华为盘古大模型在能源行业中展现出巨大的潜力和前景。其优质的计算能力和智能优化算法,将为能源产业带来翻天覆地的变革。 盘古大…

List集合类详解(附加思维导图)

目录 一、List集合思维导图 二、List集合类的常见方法 2.1、ArrayList集合常用方法 2.2、LinkedList集合常用方法 一、List集合思维导图 二、List集合类的常见方法 2.1、ArrayList集合常用方法 ①.add(Object element) 向列表的尾部添加指定的元素。 ②.size() 返回列表中…

Flink CEP (一)原理及概念

目录 1.Flink CEP 原理 2.Flink API开发 2.1 模式 pattern 2.2 模式 pattern属性 2.3 模式间的关系 1.Flink CEP 原理 Flink CEP内部是用NFA(非确定有限自动机)来实现的,由点和边组成的一个状态图,以一个初始状态作为起点&am…

PHP注册/登录/发邮件--【强撸项目】

强撸项目系列总目录在000集 PHP要怎么学–【思维导图知识范围】 文章目录 本系列校训本项目使用技术 上效果图phpStudy 设置导数据库程序基本流程项目目录如图:注册zhuce.html配套资源作业: 本系列校训 用免费公开视频,卷飞培训班哈人&…

C# Modbus通信从入门到精通(21)——Modbus TCP协议原理

Modbus TCP是走网口的,也可以在同一时间内有多个从站访问主站,并且通过Modbus事务处理标识来区分同一时刻的不同Modbus事务,这是区别于Modbus ASCII和Modbus RTU的地方。 1、访问模式: Modbus客户端通常输入Modbus服务器的IP地址…

两个小封装电机驱动芯片:MLX813XX、A4950

一.MLX813XX MELEXIS的微型电机驱动MLX813XX系列芯片集成MCU、预驱动以及功率模块等能够满足10W以下的电机驱动。 相对于普通分离器件的解决方案,MLX813XX系列电机驱动芯片是一款高集成度的驱动控制芯片,可以满足汽车系统高品质和低成本的要…

flutter开发实战-Stagger Animation实现水波纹动画

flutter开发实战-实现水波纹动画,使用到了交织动画,实现三个圆逐渐放大与渐变的过程。 一、效果图 二、实现水波纹效果 实现水波纹动画,使用到了交织动画,实现三个圆逐渐放大与渐变的过程。 交织动画 有些时候我们可能会需要一些…

珠海市黄杨山之旅游

西湾村 早上6点半出门,买点五人份的早餐 A点 第一个点,冲 C点 D岛 到d点休息 B点 高度:229米 到这里有人吐了,建议早餐不要吃超过三个包子(他吃了四个包子,1个鸡蛋,1个火腿) 记…

pytest 第三方插件

目录 前言: 顺序执行:pytest-ordering 失败重试:pytest-rerunfailures 并行执行:pytest-xdist 前言: pytest 是一个广泛使用的 Python 测试框架。它具有强大的测试运行器、测试驱动开发和测试结果可视化等功能。除…

什么是神经网络?

我们常常使用深度学习来指训练神经网络的过程。 在这里举一个房屋价格预测的例子:假设有一个数据集,它包含了六栋房子的信息。所以,你知道房屋的面积是多少平方米,并且知道这个房屋的价格。这是,你想要拟合一个根据房屋…

vue3项目,vite和vue-cli,开发和生产环境。index.html里面设置项目图标

可以在vite的根文件夹中创建public文件夹,vite默认把这个文件夹当作静态资源文件夹,会把里面的文件复制到根文件夹里面,所以你在index.html文件中导入public文件夹里面的文件时,可以直接写/xxx。在根文件夹中找复制的文件 注意&a…

Visual Studio 2022 cmake配置opencv开发环境

1. 环境与说明 这里我用的是 widnows 10 64位,Visual Studio 用的 Visual Studio Community 2022 (社区版) 对于Android开发工程师来说,为什么要使用Visual Studio 呢 ? 因为在Visual Studio中开发调试OpenCV方便,可以开发调试好后&#xf…

微服务Day4——Docker

一、什么是Docker 微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署,环境不一定一致,会…