SpringBoot集成图数据库neo4j实现简单的关联图谱

社交领域:Facebook, Twitter,Linkedin用它来管理社交关系,实现好友推荐

图数据库neo4j安装:

  1. 下载镜像:docker pull neo4j:3.5.0
  2. 运行容器:docker run -d -p 7474:7474 -p 7687:7687 --name neo4j-3.5.0 neo4j:3.5.0
  3. 停止容器:docker stop neo4j-3.5.0
  4. 启动容器:docker start neo4j-3.5.0
  5. 浏览器 http://localhost:7474/ 访问 neo4j 管理后台,初始账号/密码 neo4j/neo4j,会要求修改初始化密码,我们修改为 neo4j/123456

neo4j中可以使用Cypher查询语言(CQL)进行图形数据库的查询

①、添加节点

CREATE (:) 创建不含有属性节点

节点名称node-name和标签名称lable-name:标签名称相当于关系型数据库中的表名,而节点名称则代指这一条数据
而创建包含属性的节点时,可以在标签名称后面追加一个描绘属性的json字符串

CREATE (索尔:Person)

CREATE (洛基:Person {name:"洛基",title:"诡计之神"})

②、查询节点

MATCH (:) 查询已存在的节点及属性的数据

MATCH命令在后面配合RETURN、DELETE等命令使用,执行具体的返回或删除等操作

MATCH (p:Person) RETURN p

在这里插入图片描述
可以看到上面添加的两个节点,分别是不包含属性的空节点和包含属性的节点,并且所有节点会有一个默认生成的id作为唯一标识

③、删除节点

MATCH (p:Person) WHERE id§=100
DELETE p

在这条删除语句中,额外使用了WHERE过滤条件,它与SQL中的WHERE非常相似,命令中通过节点的id进行了过滤。 删除完成后,再次执行查询操作,可以看到只保留了洛基这一个节点

④、添加关联

再创建一个节点作为关系的两端:CREATE (p:Person {name:“索尔”,title:“雷神”})

创建关系的基本语法如下:

CREATE (:)

  • [:]
    -> (:)

也可以利用已经存在的节点创建关系,下面我们借助MATCH先进行查询,再将结果进行关联,创建两个节点之间的关联关系:

MATCH (m:Person),(n:Person) 
WHERE m.name='索尔' and n.name='洛基' 
CREATE (m)-[r:BROTHER {relation:"无血缘兄弟"}]->(n)
RETURN r

添加完成后,可以通过关系查询符合条件的节点及关系:

MATCH (m:Person)-[re:BROTHER]->(n:Person) 
RETURN m,re,n

在这里插入图片描述
如果节点被添加了关联关系后,单纯删除节点的话会报错,:

Neo.ClientError.Schema.ConstraintValidationFailed
Cannot delete node<85>, because it still has relationships. To delete this node, you must first delete its relationships.

这时,需要在删除节点时同时删除关联关系:

MATCH (m:Person)-[r:BROTHER]->(n:Person) 
DELETE m,r

SpringBoot整合neo4j

一、依赖


<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>springboot-demo</artifactId>
        <groupId>com.et</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>neo4j</artifactId>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>
    <dependencies>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-autoconfigure</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-neo4j</artifactId>
        </dependency>

        <dependency>
            <groupId>com.hankcs</groupId>
            <artifactId>hanlp</artifactId>
            <version>portable-1.2.4</version>
        </dependency>
        <dependency>
            <groupId>edu.stanford.nlp</groupId>
            <artifactId>stanford-parser</artifactId>
            <version>3.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>
    </dependencies>
</project>

二、属性文件和启动类


server:
  port: 8088
spring:
  data:
    neo4j:
      uri: bolt://127.0.0.1:7687
      username: neo4j
      password: 123456

三、文本SPO抽取

借助Git上一个现成的工具类,来进行文本的语义分析和SPO三元组的抽取工作
项目地址:https://github.com/hankcs/MainPartExtracto

//提取主谓宾
public class MainPartExtractor{
	
	private static final Logger LOG = LoggerFactory.getLogger(MainPartExtractor.class);
	
	private static LexicalizedParser lp;//加载模型
	private static GrammaticalStructureFactory gsf;

	static{
		//模型
        String models = "models/chineseFactored.ser";
        LOG.info("载入文法模型:" + models);
        lp = LexicalizedParser.loadModel(models);
        //汉语
        TreebankLanguagePack tlp = new ChineseTreebankLanguagePack();
        gsf = tlp.grammaticalStructureFactory();
	}

	//获取句子的主谓宾
	public static MainPart getMainPart(String sentence){
		
		// 去掉不可见字符
        sentence = sentence.replace("\\s+", "");
        // 分词,用空格隔开
        List<Word> wordList = seg(sentence);
        return getMainPart(wordList);
	}

	public static MainPart getMainPart(List<Word> words)
    {
        MainPart mainPart = new MainPart();
        if (words == null || words.size() == 0) return mainPart;
        Tree tree = lp.apply(words);
        LOG.info("句法树:{}", tree.pennString());
        // 根据整个句子的语法类型来采用不同的策略提取主干
        switch (tree.firstChild().label().toString())
        {
            case "NP":
                // 名词短语,认为只有主语,将所有短NP拼起来作为主语即可
                mainPart = getNPPhraseMainPart(tree);
                break;
            default:
                GrammaticalStructure gs = gsf.newGrammaticalStructure(tree);
                Collection<TypedDependency> tdls = gs.typedDependenciesCCprocessed(true);
                LOG.info("依存关系:{}", tdls);
                TreeGraphNode rootNode = getRootNode(tdls);
                if (rootNode == null)
                {
                    return getNPPhraseMainPart(tree);
                }
                LOG.info("中心词语:", rootNode);
                mainPart = new MainPart(rootNode);
                for (TypedDependency td : tdls)
                {
                    // 依存关系的出发节点,依存关系,以及结束节点
                    TreeGraphNode gov = td.gov();
                    GrammaticalRelation reln = td.reln();
                    String shortName = reln.getShortName();
                    TreeGraphNode dep = td.dep();
                    if (gov == rootNode)
                    {
                        switch (shortName)
                        {
                            case "nsubjpass":
                            case "dobj":
                            case "attr":
                                mainPart.object = dep;
                                break;
                            case "nsubj":
                            case "top":
                                mainPart.subject = dep;
                                break;
                        }
                    }
                    if (mainPart.object != null && mainPart.subject != null)
                    {
                        break;
                    }
                }
                // 尝试合并主语和谓语中的名词性短语
                combineNN(tdls, mainPart.subject);
                combineNN(tdls, mainPart.object);
                if (!mainPart.isDone()) mainPart.done();
        }

        return mainPart;
    }

	private static MainPart getNPPhraseMainPart(Tree tree)
    {
        MainPart mainPart = new MainPart();
        StringBuilder sbResult = new StringBuilder();
        List<String> phraseList = getPhraseList("NP", tree);
        for (String phrase : phraseList)
        {
            sbResult.append(phrase);
        }
        mainPart.result = sbResult.toString();
        return mainPart;
    }
	
	//从句子中提取最小粒度的短语
	public static List<String> getPhraseList(String type, String sentence)
    {
        return getPhraseList(type, lp.apply(seg(sentence)));
    }

    private static List<String> getPhraseList(String type, Tree tree)
    {
        List<String> phraseList = new LinkedList<String>();
        for (Tree subtree : tree)
        {
            if(subtree.isPrePreTerminal() && subtree.label().value().equals(type))
            {
                StringBuilder sbResult = new StringBuilder();
                for (Tree leaf : subtree.getLeaves())
                {
                    sbResult.append(leaf.value());
                }
                phraseList.add(sbResult.toString());
            }
        }
        return phraseList;
    }

	//合并名词性短语为一个节点
	private static void combineNN(Collection<TypedDependency> tdls, TreeGraphNode target)
    {
        if (target == null) return;
        for (TypedDependency td : tdls)
        {
            // 依存关系的出发节点,依存关系,以及结束节点
            TreeGraphNode gov = td.gov();
            GrammaticalRelation reln = td.reln();
            String shortName = reln.getShortName();
            TreeGraphNode dep = td.dep();
            if (gov == target)
            {
                switch (shortName)
                {
                    case "nn":
                        target.setValue(dep.toString("value") + target.value());
                        return;
                }
            }
        }
    }

    private static TreeGraphNode getRootNode(Collection<TypedDependency> tdls)
    {
        for (TypedDependency td : tdls)
        {
            if (td.reln() == GrammaticalRelation.ROOT)
            {
                return td.dep();
            }
        }

        return null;
    }

	//分词
	private static List<Word> seg(String sentence)
    {
        //分词
        LOG.info("正在对短句进行分词:" + sentence);
        List<Word> wordList = new LinkedList<>();
        List<Term> terms = HanLP.segment(sentence);
        StringBuffer sbLogInfo = new StringBuffer();
        for (Term term : terms)
        {
            Word word = new Word(term.word);
            wordList.add(word);
            sbLogInfo.append(word);
            sbLogInfo.append(' ');
        }
        LOG.info("分词结果为:" + sbLogInfo);
        return wordList;
    }

    public static MainPart getMainPart(String sentence, String delimiter)
    {
        List<Word> wordList = new LinkedList<>();
        for (String word : sentence.split(delimiter))
        {
            wordList.add(new Word(word));
        }
        return getMainPart(wordList);
    }

	public static void main(String[] args)
    {
       /* String[] testCaseArray = {
                "我一直很喜欢你",
                "你被我喜欢",
                "美丽又善良的你被卑微的我深深的喜欢着……",
                "只有自信的程序员才能把握未来",
                "主干识别可以提高检索系统的智能",
                "这个项目的作者是hankcs",
                "hankcs是一个无门无派的浪人",
                "搜索hankcs可以找到我的博客",
                "静安区体育局2013年部门决算情况说明",
                "这类算法在有限的一段时间内终止",
        };
        for (String testCase : testCaseArray)
        {
            MainPart mp = MainPartExtractor.getMainPart(testCase);
            System.out.printf("%s\t%s\n", testCase, mp);

        }*/
        mpTest();
    }
    public static void mpTest(){
        String[] testCaseArray = {
                "我一直很喜欢你",
                "你被我喜欢",
                "美丽又善良的你被卑微的我深深的喜欢着……",
                "小米公司主要生产智能手机",
                "他送给了我一份礼物",
                "这类算法在有限的一段时间内终止",
                "如果大海能够带走我的哀愁",
                "天青色等烟雨,而我在等你",
                "我昨天看见了一个非常可爱的小孩"
        };
        for (String testCase : testCaseArray) {
            MainPart mp = MainPartExtractor.getMainPart(testCase);
            System.out.printf("%s   %s   %s \n",
                    GraphUtil.getNodeValue(mp.getSubject()),
                    GraphUtil.getNodeValue(mp.getPredicate()),
                    GraphUtil.getNodeValue(mp.getObject()));
        }
    }
}

四、动态构建知识图谱

新建一个NodeServiceImpl,其中实现两个关键方法parseAndBind和addNode 首先是根据句子中抽取的主语或宾语在neo4j中创建节点的方法,这里根据节点的name判断是否为已存在的节点,如果存在则直接返回,不存在则添加:

@Service
@AllArgsConstructor
public class NodeServiceImpl implements NodeService {
    private final NodeRepository nodeRepository;
    private final RelationRepository relationRepository;


    @Override
    public Node save(Node node) {
        Node save = nodeRepository.save(node);
        return save;
    }
    @Override
    public void bind(String name1, String name2, String relationName) {
        Node start = nodeRepository.findByName(name1);
        Node end = nodeRepository.findByName(name2);

        Relation relation =new Relation();
        relation.setStartNode(start);
        relation.setEndNode(end);
        relation.setRelation(relationName);

        relationRepository.save(relation);
    }
    private Node addNode(TreeGraphNode treeGraphNode){

        String nodeName = GraphUtil.getNodeValue(treeGraphNode);

        Node existNode = nodeRepository.findByName(nodeName);
        if (Objects.nonNull(existNode))
            return existNode;

        Node node =new Node();
        node.setName(nodeName);
        return nodeRepository.save(node);
    }
    @Override
    public List<Relation> parseAndBind(String sentence) {
        MainPart mp = MainPartExtractor.getMainPart(sentence);

        TreeGraphNode subject = mp.getSubject();    //主语
        TreeGraphNode predicate = mp.getPredicate();//谓语
        TreeGraphNode object = mp.getObject();      //宾语

        if (Objects.isNull(subject) || Objects.isNull(object))
            return null;

        Node startNode = addNode(subject);
        Node endNode = addNode(object);
        String relationName = GraphUtil.getNodeValue(predicate);//关系词

        List<Relation> oldRelation = relationRepository
                .findRelation(startNode, endNode,relationName);
        if (!oldRelation.isEmpty())
            return oldRelation;

        Relation botRelation=new Relation();
        botRelation.setStartNode(startNode);
        botRelation.setEndNode(endNode);
        botRelation.setRelation(relationName);
        Relation relation = relationRepository.save(botRelation);

        return Arrays.asList(relation);
    }

}

测试:启动java应用,输入以下地址

http://127.0.0.1:8088/parse?sentence=海拉又被称为死亡女神
http://127.0.0.1:8088/parse?sentence= 死亡女神捏碎了雷神之锤
http://127.0.0.1:8088/parse?sentence=雷神之锤属于索尔

在图数据库neo4j里面查询:

MATCH (p:Person) RETURN p

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/434773.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

信息熵、KL散度、交叉熵、互信息、点互信息

信息熵 信息量 信息量是对信息的度量&#xff0c;衡量事件的不确定性&#xff0c;越小概率的事件发生了产生的信息量越大。我们应该用什么形式的函数表达信息量呢&#xff1f;除了随着概率增大而减少&#xff0c;这个函数还有具有以下性质&#xff1a; 如果有两个事件x和y彼…

云消息队列 Confluent 版正式上线!

作者&#xff1a;阿里云消息队列 前言 在 2023 年杭州云栖大会上&#xff0c;Confluent 成为阿里云技术合作伙伴&#xff0c;在此基础上&#xff0c;双方展开了深度合作&#xff0c;并在今天&#xff08;3月1日&#xff09;正式上线“云消息队列 Confluent 版”。 通过将 Co…

vue3学习(续篇)

vue3学习(续篇) 默认有vue3基础并有一定python编程经验。 chrome浏览器安装vue.js devtools拓展。 文章目录 vue3学习(续篇)1. element-ui使用2. axios 网络请求1. 简介2. 操作 3. flask-cors解决跨域问题1. 简介2. 操作 4. 前端路由 vue-router1. 简单使用2. 配置路径别名和…

基于远程NDIS的Internet共享设备驱动出现感叹号(Windows 仍在设置此设备的类配置 代码 56)解决办法

USB共享网络出现了RNDIS/MBIM设备驱动显示感叹号&#xff08;Windows 仍在设置此设备的类配置。 (代码 56)&#xff09;的情况的解决办法&#xff1a; 1.设置中搜索安全模式/更改高级启动选项->立即重新启动 2.重启后界面中选择疑难解答->高级选项->启动设置->屏…

触发HTTP preflight预检及跨域的处理方法

最近在做需求的过程中&#xff0c;遇到了很多跨域和HTTP预检的问题。下面对我所遇到过的HTTP preflight和跨域的相关问题进行总结&#xff1a; 哪些情况会触发HTTP preflight preflight属于cors规范的一部分&#xff0c;在有跨域的时候&#xff0c;在一定情况下会触发preflig…

迭代的 CKKS 高精度自举

参考文献&#xff1a; [KDE23] Kim A, Deryabin M, Eom J, et al. General bootstrapping approach for RLWE-based homomorphic encryption[J]. IEEE Transactions on Computers, 2023.[BCC22] Bae Y, Cheon J H, Cho W, et al. Meta-bts: Bootstrap** precision beyond the …

Java基础概念 7-计算机中的数据存储

目录 Java基础概念 7-计算机中的数据存储 计算机的存储规则 进制 十进制:0123456789 二进制:01 常见的进制 不同进制在代码中的表现形式 计算机为什么用二进制存储数据? 进制之间的转换 任意进制转十进制 公式: 系数*基数的权次幂 相加 二进制转十进制** 八进制转…

基于springboot+vue的智能无人仓库管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Java电梯模拟升级版

Java电梯模拟升级版 文章目录 Java电梯模拟升级版前言一、UML类图二、代码三、测试 前言 在上一版的基础上进行升级&#xff0c;楼层采用享元模式进行升级&#xff0c;并对楼层对象进一步抽象 一、UML类图 二、代码 电梯调度器抽象类 package cn.xx.evevator;import java.ut…

cuda WSL2 无需单独安装

https://docs.nvidia.com/cuda/wsl-user-guide/index.html 这个写的很详细

正则化解决过拟合

拟合 蓝色的圈代表数据&#xff0c;红色的线和绿色的线分别代表我们学习到的曲线。 绿色曲线相对红色曲线更加平滑。绿色曲线才是我们想要的&#xff0c;红色曲线从某种程度上讲是过拟合的&#xff0c;可以从图上看到他的误差是很小的&#xff0c;每个点的误差都是很小很小的。…

纯css+html实现拟态开关按钮面板

适合智能家居的开关面板UI 参考&#xff1a;https://drams.framer.website/

网络聊天室

Ser.c #include<myhead.h> #define SER_IP "192.168.159.148" #define SER_PORT 6666//因为客户端发送给服务器的消息是不同类型&#xff0c;所以定义结构体比较方便 typedef struct msg_TYPE {char type; // L:登录  C:聊天  Q:退…

flowable的java class task,也叫服务任务

源码地址12级程序猿-新年正当红/flowable-ui和服务任务 启动flowable-ui-app 浏览器输入下面的地址 http://localhost:8080/flowable-ui/#/ 在服务任务这里设置java类的路径 com.dmg.flowabledemo.task.MyServiceTask 当请假任务完成之后&#xff0c;自动触发这个服务任务…

网络信息安全:nginx漏洞收集(升级至最新版本)

网络&信息安全&#xff1a;nginx漏洞收集&#xff08;升级至最新版本&#xff09; 一、风险详情1.1 nginx 越界写入漏洞(CVE-2022-41742)1.2 nginx 缓冲区错误漏洞(CVE-2022-41741)1.3 nginx 拒绝服务漏洞&#xff08;CNVD-2018-22806&#xff09; 二、nginx升级步骤 &…

奥壹oelove婚恋交友v10.0_10.1情感导师插件_商城插件SQL数据库导入升级方法

大家注意哈奥壹oelove的系统默认是不含情感导师插件和商城系统的&#xff0c;这两个插件需要再官方独立购买&#xff0c;有幸公司付钱购买了系统及两套商业插件&#xff0c;可以看我昵称找我注明CSDN我已经把数据库及模板文件提取出来了&#xff0c;先说下数据库把&#xff0c;…

基于Mindspore,通过Resnet50迁移学习实现猫十二分类

使用平台介绍 使用平台&#xff1a;启智AI协作平台 使用数据集&#xff1a;百度猫十二分类 数据集介绍 有cat_12_train和cat_12_test和train_list.txt train_list.txt内有每张图片所对应的标签 Minspore部分操作科普 数据集加载 Mindspore加载图片数据集就直接调整成这种…

uniapp H5 $el.querySelectorAll is not a function

在监听是否在可视区域遇到问题&#xff08;网页端&#xff09; 解决方案 <view class"container"> ...省略 业务代码... </view>参考 &#xff1a; https://blog.csdn.net/qq_18841969/article/details/134620559

狼人杀 (狼人) 个人理解玩法

今天 我们来说说 狼人杀游戏 每个板子都有的一个角色 狼人 因为 动物园板子 平民被换成了 羊驼 所以 狼人也是唯一一个所有板子都有的角色 狼人的技能非常简单 每天晚上 可以袭击一名玩家 如果没有特殊情况 被袭击的玩家天亮时会直接出局 特殊情况包括 比较典型的有 守卫的盾…

Matter 笔记1-环境准备,编译

不要远程登录Ubuntu输入以下命令&#xff0c;原因&#xff1a;ubuntu/linux上的http代理设置 1. 准备 1.1 工具 Ubuntu 22.04 LTSClash 里General的端口设置到ubuntu 的网络设置里 1.2 代码 这里使用芯科整理过的代码 git clone https://github.com/SiliconLabs/matter.…