特征值与特征向量
已知任意向量x,现有矩阵A对x进行操作后,得到新的向量Ax。这就好比是自变量x与函数f(x)的关系一样,向量x通过类似“函数”的处理得到了一个新的向量Ax。这个新的向量可能和原向量x方向相同,也可能不同(事实上大多都不同)。此外,新的向量与原向量的长度可能向量,也可能不同。而特征向量(Eigen vector)指的就是那些和原始向量x平行的那些Ax,这是线性代数所研究的两大问题的的另一个部分(在我看来,线性代数的两个主要方向一个是研究垂直,另一个就是这里的平行)。
特征向量与特征值的意义:
对于矩阵A而言,存在一些特殊的向量x,使得矩阵A作用于向量x之后所得到的Ax任然与原向量x平行(这里的平行可理解为与x的方向相同或正好相反),得到:
满足上述描述的向量x,就被称为特征向量。其中,系数是一个数,又叫特征值(Eigen value),可以看成是向量x长度的一个倍数。可以是1,表示Ax=x即,矩阵A没有改变向量x的长度。可以是-5,即改变了x的方向和大小,可以是0.26,也可以是复数。
Tips:当特征值=0,且x不是零向量时,矩阵A应该满足什么条件呢?
答:若=0,则x为零向量,得到Ax=0。向量x属于A的零空间(左零空间)又不是平凡解零向量,则矩阵A必须是奇异矩阵(singular matrix)才能让非零向量x通过线性组合得到零向量。这样一来,我们就得出了一条重要推导,若矩阵A为奇异矩阵,即不可逆矩阵,则矩阵A的特征值包含0。(这里我们再补充一点,对于矩阵A而言,可以有多个特征向量,对应多个特征值)。
特征向量与特征值的性质:
1,n维度矩阵A有n个特征值。
2,这n个特征值的乘积等于矩阵A的行列式。
3,n个特征值的和等于矩阵A主对角线元素的和,这个和被称为Trace(迹)。
一些常见矩阵的特征向量与特征值:
1,投影矩阵P(projection matrix)
已知投影矩阵P可把任意向量投影到n维子空间S上,例如下图中,投影矩阵P作用于向量b上,得到了b在S上的投影Pb。
现在我们要问的是,对于投影矩阵P而言,他作用在什么向量x上,得到的结果依然与x平行?如果平行,这个新向量的长度是x的几倍呢(即,求)?根据特征向量的定义,投影矩阵P作用于x上后得到的Px应当平行于Px。那么对投影矩阵P而言,特征向量x必须是n维子空间S内的向量。因为,对子空间S内的任意向量x施加P矩阵,得到投影就是x自己。方向与x相同,且长度不变,即特征值为1。用数学表达式来表示就是:
此外,我们还知道当向量b垂直于子空间S时,b在S上的投影为零向量。因此,我们又发现了S空间之外的特征向量,即所有垂直于S空间的向量x,投影Px与x的方向相同,但长度为0。表达为数学公式就是:
小结:这里我们总结一下投影矩阵的特征向量与特征值,对于投影矩阵P而言,他的特征向量为投影矩阵P所投影的子空间内的所有向量和垂直于该子空间的所有向量。
2,置换矩阵(permutation matrix)
先看一个例子,已知置换矩阵A为(交换两个元素的位置):
同样,还是按照特征向量的定义出发,现有的置换矩阵A作用在哪个向量x上,才能使得新向量Ax平行于x?换句话说,就是要找到一个向量x,交换元素位置后仍然是x或倍的x? 明显,如果向量x中的两个元素相同,则不论怎么交换两个元素的位置,得到的结果仍是x。
例如:
因此,对于矩阵A而言,所有两个元素相同的向量x都是A的特征向量,且特征值为1。又因为,矩阵A为二维矩阵,因此,可能还存在一对特征向量与特征值。比如说,如果我们先令特征值为-1,那么就允许特征向量x中的元素大小相同但符号相反,这样一来,交换顺序再乘以-1后,得到的仍然还是x。
例如:
小结:对于置换矩阵而言,那些交换元素位置后依然还是原始向量的向量就是A的特征向量,对应的特征值为1。而那些交换元素相应位置后,只改变了符号但不改变数值的向量,也是A的特征向量,他们所对应的特征值为-1。
对于一般矩阵A,如何找到他的特征值与特征向量?
Step I: Find λ first!
首先,我们有方程:
但这里有两个未知数,因此我们把上面的方程改写一下:
这个齐次方程的解就是矩阵(A-I)的零空间,抛开平凡解全0向量不说。要想让矩阵的零空间存在非零向量,则矩阵的A必为奇异矩阵,即不可逆矩阵。同时,结合之前学到的行列式的概念,若一个矩阵是奇异矩阵,则矩阵的行列式为0。这样一来,我们就不用考虑未知数x,也就是特征向量,先求未知数,也就是特征值。如下:
这个方程是一个非常重要的方程(Key equation),叫特征值方程(Eigen-value equation)或者叫特征方程(characteristic equation)。
Step II: Substitue λ and solve equations!
求解完特征值方程后会得到n个(可能会有相同的),把这些代入到经过改写后的方程组中,求解齐次方程组,或者说是求解零空间,得到相应的特征向量。
举个例子来说明上述求解过程:
对于上面提到过的置换矩阵A,第一步,我们先求det(A-λI)=0:
得到:
由此得到两个特征根:
把第一个特征值λ=1代入改写后的方程:
其中(A-I)为:
对该矩阵消元得到矩阵U,找到主元列和自由列,其中与自由列位置所对应的向量x中的元素就是自由变量。设自由变量为一个任意数,求出相应的特解。
消元矩阵U的秩为1,存在一个特解。第一列为主元列,第二列为自由列。因此,对应的自由变量为x2。令x2=1, 则x1=1得到一个特解,也就是我们要找的特征向量x:
相应的代入第二个特征值λ=-1:
令自由变量x2=1,则x1=-1: