层序遍历
思路: 需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。
使用队列实现二叉树广度优先遍历,动画如下:
注意: 不要忽略root为空的情况,否则会报错。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
Deque<TreeNode> queue=new LinkedList<>();
List<List<Integer>> res=new ArrayList<>();
if(root==null) return res;
queue.add(root);
while(!queue.isEmpty()){
int len=queue.size();
List<Integer> temp=new ArrayList<>();
for(int i=0;i<len;i++){
TreeNode cur=queue.poll();
temp.add(cur.val);
if(cur.left!=null) queue.add(cur.left);
if(cur.right!=null) queue.add(cur.right);
}
res.add(temp);
}
return res;
}
}
226.翻转二叉树
可以发现想要翻转它,其实就把每一个节点的左右孩子交换一下就可以了。
关键在于遍历顺序,前中后序应该选哪一种遍历顺序? (一些同学这道题都过了,但是不知道自己用的是什么顺序)
这道题目使用前序遍历和后序遍历都可以,唯独中序遍历不方便,因为中序遍历会把某些节点的左右孩子翻转了两次!建议拿纸画一画,就理解了。
以递归的前序遍历为例
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
Deque<TreeNode> queue=new LinkedList<>();
List<List<Integer>> res=new ArrayList<>();
if(root==null) return res;
queue.add(root);
while(!queue.isEmpty()){
int len=queue.size();
List<Integer> temp=new ArrayList<>();
for(int i=0;i<len;i++){
TreeNode cur=queue.poll();
temp.add(cur.val);
if(cur.left!=null) queue.add(cur.left);
if(cur.right!=null) queue.add(cur.right);
}
res.add(temp);
}
return res;
}
}
101.对称二叉树
思路: 首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点!
对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。
1. 确定递归函数的参数和返回值
因为我们要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。
返回值自然是bool类型。
代码如下:
public boolean compare(TreeNode left,TreeNode right)
2.确定终止条件
要比较两个节点数值相不相同,首先要把两个节点为空的情况弄清楚!否则后面比较数值的时候就会操作空指针了。
节点为空的情况有:(注意我们比较的其实不是左孩子和右孩子,所以如下我称之为左节点右节点)
左节点为空,右节点不为空,不对称,return false
左不为空,右为空,不对称 return false
左右都为空,对称,返回true
此时已经排除掉了节点为空的情况,那么剩下的就是左右节点不为空:
左右都不为空,比较节点数值,不相同就return false
此时左右节点不为空,且数值也不相同的情况我们也处理了。
代码如下:
if(left==null && right==null) return true;//两个都为空
else if(left==null&&right!=null || left!=null&&right==null) return false;//其中一个为空
else if(left.val!=right.val) return false;//都不为空
注意上面最后一种情况,我没有使用else,而是else if, 因为我们把以上情况都排除之后,剩下的就是 左右节点都不为空,且数值相同的情况。
3. 确定单层递归的逻辑
此时才进入单层递归的逻辑,单层递归的逻辑就是处理 左右节点都不为空,且数值相同的情况。
比较二叉树外侧是否对称:传入的是左节点的左孩子,右节点的右孩子。
比较内侧是否对称,传入左节点的右孩子,右节点的左孩子。
如果左右都对称就返回true ,有一侧不对称就返回false 。
代码如下:
boolean in=compare(left.right,right.left);
boolean out=compare(left.left,right.right);
return in&&out;
如上代码中,我们可以看出使用的遍历方式,左子树左右中,右子树右左中,所以我把这个遍历顺序也称之为“后序遍历”(尽管不是严格的后序遍历)。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root==null) return true;
else return compare(root.left,root.right);
}
public boolean compare(TreeNode left,TreeNode right){
//充分考虑空节点的情况,防止出现空指针异常
if(left==null && right==null) return true;
else if(left==null&&right!=null || left!=null&&right==null) return false;
else if(left.val!=right.val) return false;
else{
boolean in=compare(left.right,right.left);
boolean out=compare(left.left,right.right);
return in&&out;
}
}
}