C语言经典算法-1

C语言经典算法讲解练习

文章目录

  • C语言经典算法讲解练习
    • 1.汉若塔
    • 2.费式数列
    • 3. 巴斯卡三角形
    • 4.三色棋
    • 5.老鼠走迷官(一)
    • 6.老鼠走迷官(二)
    • 7.骑士走棋盘
    • 8.八皇后
    • 9.八枚银币
    • 10.生命游戏

1.汉若塔

说明:河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市;1883年法国数学家 Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。
解法:如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。

#include <stdio.h>

void hanoi(int n, char A, char B, char C) {
    if(n == 1) {
        printf("Move sheet %d from %c to %c\n", n, A, C);
    }
    else {
        hanoi(n-1, A, C, B);
        printf("Move sheet %d from %c to %c\n", n, A, C);
        hanoi(n-1, B, A, C);
    }
}

int main() {
    int n;
    printf("请输入盘数:");
    scanf("%d", &n);
    hanoi(n, 'A', 'B', 'C');
    return 0;
} 

这段代码是一个递归实现的汉诺塔问题解决方案。输入一个整数n代表盘子的数量,然后调用hanoi函数,在三个柱子A、B、C之间移动这些盘子。如果n等于1,就直接从柱子A移动到柱子C;否则将n-1个盘子从A经过C移动到B,然后将剩下的一个盘子从A移动到C,最后再将n-1个盘子从B经过A移动到C。最终完成整个汉诺塔问题的移动。

2.费式数列

说明:Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:「若有一只免子每个月生一只小免子,一个月后小免子也开始生产。起初只有一只免子,一个月后就有两只免子,二个月后有三只免子,三个月后有五只免子(小免子投入生产)…。
如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例如以下: 1、1 、2、3、5、8、13、21、34、55、89…
解法:依说明,我们可以将费氏数列定义为以下:
fn = fn-1 + fn-2   if n > 1
fn = n       if n = 0, 1

#include <stdio.h> 
#include <stdlib.h> 

#define N 20 

int main(void) { 
int Fib[N] = {0}; 
int i; 

Fib[0] = 0; 
Fib[1] = 1; 

for(i = 2; i < N; i++) 
Fib[i] = Fib[i-1] + Fib[i-2]; 

for(i = 0; i < N; i++) 
printf("%d ", Fib[i]); 
printf("\n"); 

return 0; 
}

3. 巴斯卡三角形

在这里插入图片描述

#include <stdio.h>
#define N 12
long combi(int n, int r){
    int i;
    long p = 1;
    for(i = 1; i <= r; i++)
        p = p * (n-i+1) / i;
    return p;
}
void paint() {
    int n, r, t;
    for(n = 0; n <= N; n++) {
        for(r = 0; r <= n; r++) {
            int i;/* 排版设定开始 */
            if(r == 0) {  
                for(i = 0; i <= (N-n); i++) 
                    printf("   ");
            }else {
                printf("   ");
            } /* 排版设定结束 */
            printf("%3d", combi(n, r));
        }
        printf("\n");
    }
}

这段代码定义了一个宏N为12,然后有一个计算组合数的函数combi和一个打印组合数的函数paint。combi函数用来计算C(n, r)的值,即从n个元素中选取r个元素的组合数。paint函数则是用来打印一个组合数三角形,以展示不同的组合数值。
在主函数中,首先循环遍历n从0到12,然后在每个n值下再循环遍历r从0到n,计算并打印出对应的组合数值。同时也进行了一些排版设定,使输出更加美观。
整体来说,这段代码的功能是计算组合数并以三角形形式打印出来。

4.三色棋

说明:三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为Dutch Nation Flag(Dijkstra为荷兰人),而多数的作者则使用Three-Color Flag来称之。

假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上进行这个动作,而且一次只能调换两个旗子。
解法:在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来作辅助,问题的解法很简单,您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到白色留在中间,遇到红色往后移,如下所示:
只是要让移动次数最少的话,就要有些技巧:
如果图中W所在的位置为白色,则W+1,表示未处理的部份移至至白色群组。
如果W部份为蓝色,则B与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。
如果W所在的位置是红色,则将W与R交换,但R要减1,表示未处理的部份减1。

注意B、W、R并不是三色旗的个数,它们只是一个移动的指标;什幺时候移动结束呢?一开始时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗子就都是红色了,此时就可以结束移动,如下所示:

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#define BLUE 'b' 
#define WHITE 'w' 
#define RED 'r' 

#define SWAP(x, y) { char temp; \
                     temp = color[x]; \
                     color[x] = color[y]; \
                     color[y] = temp; }

int main() {
    char color[] = {'r', 'w', 'b', 'w', 'w', 
                    'b', 'r', 'b', 'w', 'r', '\0'}; 

    int wFlag = 0;
    int bFlag = 0;
    int rFlag = strlen(color) - 1;
    int i; 

    for(i = 0; i < strlen(color); i++) 
        printf("%c ", color[i]); 
    printf("\n"); 

    while(wFlag <= rFlag) {
        if(color[wFlag] == WHITE)
            wFlag++;
        else if(color[wFlag] == BLUE) {
            SWAP(bFlag, wFlag);
            bFlag++; wFlag++;
        } 
        else { 
            while(wFlag < rFlag && color[rFlag] == RED)
              rFlag--;
            SWAP(rFlag, wFlag);
            rFlag--;
        } 
    } 

    for(i = 0; i < strlen(color); i++) 
        printf("%c ", color[i]); 
    printf("\n"); 

    return 0; 
} 
 

首先,定义了三种颜色的宏:BLUE表示蓝色,WHITE表示白色,RED表示红色。然后定义了一个宏SWAP来交换两个位置的颜色。
在主函数main中,定义了一个包含不同颜色的数组color,并初始化了三个标志变量wFlag、bFlag和rFlag。然后通过一个循环打印数组中的颜色。接着使用一个while循环来解决荷兰国旗问题:将颜色按照蓝色、白色和红色的顺序排列。
具体来说,当wFlag小于等于rFlag时,根据当前位置的颜色进行不同的操作:如果是白色则继续前进,如果是蓝色则与bFlag位置交换并将bFlag和wFlag都加一,如果是红色则将当前位置与rFlag位置交换并将rFlag减一。
最后再次用循环输出调整后的颜色数组,完成排序。

5.老鼠走迷官(一)

说明老鼠走迷宫是递回求解的基本题型,我们在二维阵列中使用2表示迷宫墙壁,使用1来表示老鼠的行走路径,试以程式求出由入口至出口的路径。
解法老鼠的走法有上、左、下、右四个方向,在每前进一格之后就选一个方向前进,无法前进时退回选择下一个可前进方向,如此在阵列中依序测试四个方向,直到走到出口为止,这是递回的基本题,请直接看程式应就可以理解。

#include <stdio.h>
#include <stdlib.h> 

int visit(int, int); 

int maze[7][7] = {{2, 2, 2, 2, 2, 2, 2}, 
                  {2, 0, 0, 0, 0, 0, 2}, 
                  {2, 0, 2, 0, 2, 0, 2}, 
                  {2, 0, 0, 2, 0, 2, 2}, 
                  {2, 2, 0, 2, 0, 2, 2}, 
                  {2, 0, 0, 0, 0, 0, 2}, 
                  {2, 2, 2, 2, 2, 2, 2}}; 

int startI = 1, startJ = 1;  // 入口
int endI = 5, endJ = 5;  // 出口
int success = 0;

int main(void) { 
    int i, j; 

    printf("显示迷宫:\n"); 
    for(i = 0; i < 7; i++) { 
        for(j = 0; j < 7; j++) 
            if(maze[i][j] == 2) 
                printf("█"); 
            else 
                printf("  "); 
        printf("\n"); 
    } 

    if(visit(startI, startJ) == 0)
        printf("\n没有找到出口!\n"); 
    else { 
        printf("\n显示路径:\n"); 
        for(i = 0; i < 7; i++) { 
            for(j = 0; j < 7; j++) { 
                if(maze[i][j] == 2) 
                    printf("█"); 
                else if(maze[i][j] == 1) 
                    printf("◇"); 
                else 
                    printf("  "); 
            } 
            printf("\n"); 
        } 
    } 

    return 0; 
} 

int visit(int i, int j) { 
    maze[i][j] = 1; 

    if(i == endI && j == endJ)
        success = 1; 

    if(success != 1 && maze[i][j+1] == 0) visit(i, j+1); 
    if(success != 1 && maze[i+1][j] == 0) visit(i+1, j); 
    if(success != 1 && maze[i][j-1] == 0) visit(i, j-1); 
    if(success != 1 && maze[i-1][j] == 0) visit(i-1, j); 

    if(success != 1) 
        maze[i][j] = 0; 
    
    return success; 
}  

代码中定义了一个7x7的迷宫数组maze,其中数字2表示墙,0表示可走的路,1表示已走过的路。起点和终点分别为(1,1)和(5,5)。
visit函数通过递归调用来搜索通往终点的路径,先将当前位置标记为1,然后按右、下、左、上的顺序尝试前进,如果成功找到终点则将success标记为1。最终将找到的路径标记为1,没找到则将标记为0。
主函数先输出迷宫地图,然后调用visit函数开始寻找路径。如果成功找到出口则输出路径,否则输出未找到出口的提示。
整体思路清晰,代码结构简单易懂。

6.老鼠走迷官(二)

说明由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不只一条,如何求出所有的路径呢?
解法求所有路径看起来复杂但其实更简单,只要在老鼠走至出口时显示经过的路径,然后退回上一格重新选择下一个位置继续递回就可以了,比求出单一路径还简单,我们的程式只要作一点修改就可以了。

#include <stdio.h>
#include <stdlib.h> 

void visit(int, int);

int maze[9][9] = {{2, 2, 2, 2, 2, 2, 2, 2, 2},
                  {2, 0, 0, 0, 0, 0, 0, 0, 2},
                  {2, 0, 2, 2, 0, 2, 2, 0, 2},
                  {2, 0, 2, 0, 0, 2, 0, 0, 2},
                  {2, 0, 2, 0, 2, 0, 2, 0, 2},
                  {2, 0, 0, 0, 0, 0, 2, 0, 2},
                  {2, 2, 0, 2, 2, 0, 2, 2, 2},
                  {2, 0, 0, 0, 0, 0, 0, 0, 2},
                  {2, 2, 2, 2, 2, 2, 2, 2, 2}};

int startI = 1, startJ = 1;  // 入口
int endI = 7, endJ = 7;  // 出口

int main(void) { 
    int i, j; 

    printf("显示迷宫:\n"); 
    for(i = 0; i < 7; i++) { 
        for(j = 0; j < 7; j++) 
            if(maze[i][j] == 2) 
                printf("█"); 
            else 
                printf("  "); 
        printf("\n"); 
    } 

    visit(startI, startJ);

    return 0; 
} 

void visit(int i, int j) {
    int m, n;

    maze[i][j] = 1; 

    if(i == endI && j == endJ) {
        printf("\n显示路径:\n");
        for(m = 0; m < 9; m++) {
            for(n = 0; n < 9; n++)
                if(maze[m][n] == 2)
                    printf("█");
                else if(maze[m][n] == 1)
                    printf("◇");
                else
                    printf("  ");
            printf("\n");
        }
    }

    if(maze[i][j+1] == 0) visit(i, j+1);
    if(maze[i+1][j] == 0) visit(i+1, j);
    if(maze[i][j-1] == 0) visit(i, j-1);
    if(maze[i-1][j] == 0) visit(i-1, j);

    maze[i][j] = 0;
}  

首先定义了一个9x9的迷宫数组,其中2代表墙,0代表通路,1代表走过的路。起点和终点分别为(1,1)和(7,7)。visit函数用来递归搜索路径,将走过的路标记为1。当找到终点时,输出路径,用"◇"表示走过的路。然后尝试四个方向移动,如果位置为0则继续递归移动,直到找到出口。最后将走过的路标记为0。在main函数中显示迷宫地图,并调用visit函数开始寻找路径。

7.骑士走棋盘

说明骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

#include <stdio.h> 

int board[8][8] = {0}; 

int main(void) {
    int startx, starty;
    int i, j;
    printf("输入起始点:");
    scanf("%d %d", &startx, &starty);

    if(travel(startx, starty)) {
        printf("游历完成!\n");
    }
    else {
        printf("游历失败!\n");
    }

    for(i = 0; i < 8; i++) {
        for(j = 0; j < 8; j++) {
            printf("%2d ", board[i][j]);
        }
        putchar('\n');
    }
    return 0;
} 

int travel(int x, int y) {
    // 对应骑士可走的八个方向
    int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
    int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1};

    // 测试下一步的出路
    int nexti[8] = {0};
    int nextj[8] = {0};
    // 记录出路的个数
    int exists[8] = {0};
    int i, j, k, m, l;
    int tmpi, tmpj;
    int count, min, tmp;

    i = x;
    j = y;
    board[i][j] = 1;

    for(m = 2; m <= 64; m++) {
        for(l = 0; l < 8; l++) 
            exists[l] = 0;

        l = 0;

        // 试探八个方向
        for(k = 0; k < 8; k++) {
            tmpi = i + ktmove1[k];
            tmpj = j + ktmove2[k];

            // 如果是边界了,不可走
            if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7)
                continue;

            // 如果这个方向可走,记录下来
            if(board[tmpi][tmpj] == 0) {
                nexti[l] = tmpi;
                nextj[l] = tmpj;
                // 可走的方向加一个
                l++;
            }
        }

        count = l;
        // 如果可走的方向为0个,返回
        if(count == 0) {
            return 0;
        }
        else if(count == 1) {
            // 只有一个可走的方向
            // 所以直接是最少出路的方向
            min = 0;
        }
        else {
            // 找出下一个位置的出路数
            for(l = 0; l < count; l++) {
                for(k = 0; k < 8; k++) {
                    tmpi = nexti[l] + ktmove1[k];
                    tmpj = nextj[l] + ktmove2[k];
                    if(tmpi < 0 || tmpj < 0 || 
                       tmpi > 7 || tmpj > 7) {
                        continue;
                    }
                    if(board[tmpi][tmpj] == 0)
                        exists[l]++;
                }
            }
            tmp = exists[0];
            min = 0;
            // 从可走的方向中寻找最少出路的方向
            for(l = 1; l < count; l++) {
                if(exists[l] < tmp) {
                    tmp = exists[l];
                    min = l;
                }
            }
        }

        // 走最少出路的方向
        i = nexti[min];
        j = nextj[min];
        board[i][j] = m;
    }

    return 1;
} 

代码首先定义了一个8x8的棋盘board,并初始化为全0。然后在主函数中,用户输入起始点的坐标,然后调用travel函数来游历棋盘。如果游历成功,则输出"游历完成!“,否则输出"游历失败!”。最后输出游历的路径。
在travel函数中,定义了马的八种移动方向ktmove1和ktmove2。然后对起始点进行标记,然后开始遍历棋盘寻找下一步可以走的方向。循环64次,即遍历完整个棋盘,每次找到下一个位置可走的最小出路方向进行移动,并标记路径点。最后返回1表示游历成功,返回0表示游历失败。
整个程序通过模拟马在棋盘上的移动路径,展示了一种解决问题的算法,同时也展示了基本的数组操作和循环控制的使用。

8.八皇后

说明西洋棋中的皇后可以直线前进,吃掉遇到的所有棋子,如果棋盘上有八个皇后,则这八个皇后如何相安无事的放置在棋盘上,1970年与1971年, E.W.Dijkstra与N.Wirth曾经用这个问题来讲解程式设计之技巧。
解法关于棋盘的问题,都可以用递回求解,然而如何减少递回的次数?在八个皇后的问题中,不必要所有的格子都检查过,例如若某列检查过,该该列的其它格子就不用再检查了,这个方法称为分支修剪。

#include <stdio.h> 
#include <stdlib.h> 
#define N 8 

int column[N+1]; // 同栏是否有皇后,1表示有 
int rup[2*N+1]; // 右上至左下是否有皇后 
int lup[2*N+1]; // 左上至右下是否有皇后 
int queen[N+1] = {0}; 
int num; // 解答编号 

void backtrack(int); // 递回求解 

int main(void) { 
    int i; 
    num = 0; 

    for(i = 1; i <= N; i++) 
        column[i] = 1; 

    for(i = 1; i <= 2*N; i++) 
        rup[i] = lup[i] = 1; 

    backtrack(1); 

    return 0; 
} 

void showAnswer() {
    int x, y;
    printf("\n解答 %d\n", ++num);
    for(y = 1; y <= N; y++) {
        for(x = 1; x <= N; x++) {
            if(queen[y] == x) {
                printf(" Q");
            }
            else {
                printf(" .");
            }
        }
        printf("\n");
    }
}

void backtrack(int i) { 
    int j;

    if(i > N) { 
        showAnswer();
    } 
    else { 
        for(j = 1; j <= N; j++) { 
            if(column[j] == 1 && 
                 rup[i+j] == 1 && lup[i-j+N] == 1) { 
                queen[i] = j; 
                // 设定为占用
                column[j] = rup[i+j] = lup[i-j+N] = 0; 
                backtrack(i+1); 
                column[j] = rup[i+j] = lup[i-j+N] = 1; 
            } 
        } 
    } 
} 

代码中使用了回溯法来递归求解,通过判断每一个皇后的位置是否冲突来找到所有合法的解。
首先定义了三个数组来表示同栏、左上至右下、右上至左下是否有皇后的情况。然后定义了queen数组来存储每一行皇后的位置。定义了一个backtrack函数来递归求解,当找到一个合法的解时,调用showAnswer函数显示这个解。
在main函数中初始化了一些数组,并调用backtrack函数开始求解。backtrack函数中首先判断当前行是否超过了N,如果超过了则调用showAnswer展示解答,否则遍历当前行的所有列,判断是否满足条件,如果满足条件则设置queen数组,并继续递归求解下一行。当递归完成后,重置数组来继续寻找其他解。
最终得到所有的解,并依次将解输出显示。
这段代码使用了经典的回溯算法来解决八皇后问题,通过递归探索所有可能的解,找到所有不冲突的皇后放置方式。

9.八枚银币

说明现有八枚银币a b c d e f g h,已知其中一枚是假币,其重量不同于真币,但不知是较轻或较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。
解法单就求假币的问题是不难,但问题限制使用最少的比较次数,所以我们不能以单纯的回圈比较来求解,我们可以使用决策树(decision tree),使用分析与树状图来协助求解。一个简单的状况是这样的,我们比较a+b+c与d+e+f ,如果相等,则假币必是g或h,我们先比较g或h哪个较重,如果g较重,再与a比较(a是真币),如果g等于a,则g为真币,则h为假币,由于h比g轻而 g是真币,则h假币的重量比真币轻。


```c
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
void compare(int[], int, int, int); 
void eightcoins(int[]); 
 
int main(void) { 
    int coins[8] = {0}; 
    int i; 

    srand(time(NULL)); 

    for(i = 0; i < 8; i++) 
        coins[i] = 10; 

    printf("\n输入假币重量(比10大或小):"); 
    scanf("%d", &i); 
    coins[rand() % 8] = i; 

    eightcoins(coins); 

    printf("\n\n列出所有钱币重量:"); 
    for(i = 0; i < 8; i++) 
        printf("%d ", coins[i]); 

    printf("\n"); 

    return 0; 
} 

void compare(int coins[], int i, int j, int k) { 
    if(coins[i] > coins[k]) 
        printf("\n假币 %d 较重", i+1); 
    else 
        printf("\n假币 %d 较轻", j+1); 
} 

void eightcoins(int coins[]) { 
    if(coins[0]+coins[1]+coins[2] == 
       coins[3]+coins[4]+coins[5]) { 
        if(coins[6] > coins[7]) 
            compare(coins, 6, 7, 0); 
        else 
            compare(coins, 7, 6, 0); 
    } 
    else if(coins[0]+coins[1]+coins[2] > 
            coins[3]+coins[4]+coins[5]) { 
        if(coins[0]+coins[3] == coins[1]+coins[4]) 
            compare(coins, 2, 5, 0); 
        else if(coins[0]+coins[3] > coins[1]+coins[4]) 
            compare(coins, 0, 4, 1); 
        if(coins[0]+coins[3] < coins[1]+coins[4]) 
            compare(coins, 1, 3, 0); 
    } 
    else if(coins[0]+coins[1]+coins[2] <
            coins[3]+coins[4]+coins[5]) { 
        if(coins[0]+coins[3] == coins[1]+coins[4]) 
            compare(coins, 5, 2, 0); 
        else if(coins[0]+coins[3] > coins[1]+coins[4]) 
            compare(coins, 3, 1, 0); 
        if(coins[0]+coins[3] < coins[1]+coins[4]) 
            compare(coins, 4, 0, 1); 
    } 
} 

实现了一个模拟称重假币的程序,假设有8枚硬币中有一枚假币,重量要么比其他正常硬币重,要么比其他正常硬币轻。程序通过随机将假币的重量设为大于或小于10,并通过对硬币的称重比较,找出这枚假币是较重还是较轻。
void compare(int coins[], int i, int j, int k)函数用于比较硬币的重量,如果第i枚硬币比第k枚硬币重,则输出"假币i较重”,否则输出"假币j较轻"。
void eightcoins(int coins[])函数实现了对8枚硬币进行比较的逻辑。首先比较3枚硬币的总重量是否相等,如果相等再比较剩下的硬币中哪枚是假币。如果不相等,则继续按一定的逻辑比较找出假币。
main函数初始化硬币的重量为10,随机设定一枚硬币的重量为假币的重量,并调用eightcoins函数比较找出假币的情况,并输出所有硬币的重量。
这段代码用来模拟称重找出一枚假币的重量是偏重还是偏轻。

10.生命游戏

说明生命游戏(game of life)为1970年由英国数学家J. H. Conway所提出,某一细胞的邻居包括上、下、左、右、左上、左下、右上与右下相邻之细胞,游戏规则如下:
孤单死亡:如果细胞的邻居小于一个,则该细胞在下一次状态将死亡。
拥挤死亡:如果细胞的邻居在四个以上,则该细胞在下一次状态将死亡。
稳定:如果细胞的邻居为二个或三个,则下一次状态为稳定存活。
复活:如果某位置原无细胞存活,而该位置的邻居为三个,则该位置将复活一细胞。
解法生命游戏的规则可简化为以下,并使用CASE比对即可使用程式实作:
邻居个数为0、1、4、5、6、7、8时,则该细胞下次状态为死亡。
邻居个数为2时,则该细胞下次状态为复活。
邻居个数为3时,则该细胞下次状态为稳定。

#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 

#define MAXROW 10 
#define MAXCOL 25 
#define DEAD 0 
#define ALIVE 1 
int map[MAXROW][MAXCOL], newmap[MAXROW][MAXCOL]; 

void init(); 
int neighbors(int, int);
void outputMap();
void copyMap();

int main() { 
   int row, col; 
   char ans; 
   init();
   while(1) {
      outputMap();
      for(row = 0; row < MAXROW; row++) {
         for(col = 0; col < MAXCOL; col++) {
            switch (neighbors(row, col)) {
               case 0: 
               case 1: 
               case 4: 
               case 5: 
               case 6: 
               case 7: 
               case 8: 
                  newmap[row][col] = DEAD; 
                  break; 
               case 2: 
                  newmap[row][col] = map[row][col]; 
                  break; 
               case 3: 
                  newmap[row][col] = ALIVE; 
                  break; 
            } 
         }
      }

      copyMap();
      printf("\nContinue next Generation ? ");
      getchar();
      ans = toupper(getchar());
      if(ans != 'Y')	break;
   }
   return 0; 
} 

void init() {
   int row, col; 
    
   for(row = 0; row < MAXROW; row++) 
      for(col = 0; col < MAXCOL; col++) 
         map[row][col] = DEAD; 

   puts("Game of life Program"); 
   puts("Enter x, y where x, y is living cell");
   printf("0 <= x <= %d, 0 <= y <= %d\n", 
                 MAXROW-1, MAXCOL-1); 
   puts("Terminate with x, y = -1, -1");

   while(1) {
      scanf("%d %d", &row, &col); 
      if(0 <= row && row < MAXROW && 
         0 <= col && col < MAXCOL)
         map[row][col] = ALIVE;
      else if(row == -1 || col == -1)
         break;
      else 
         printf("(x, y) exceeds map ranage!"); 
   }
}

int neighbors(int row, int col) {
   int count = 0, c, r; 
   for(r = row-1; r <= row+1; r++) 
      for(c = col-1; c <= col+1; c++) { 
         if(r < 0 || r >= MAXROW || c < 0 || c >= MAXCOL) 
            continue; 
         if(map[r][c] == ALIVE) 
            count++; 
      } 

   if(map[row][col] == ALIVE) 
      count--; 
   return count; 
} 

void outputMap() {
   int row, col; 
   printf("\n\n%20cGame of life cell status\n"); 
   for(row = 0; row < MAXROW; row++) { 
      printf("\n%20c", ' '); 
      for(col = 0; col < MAXCOL; col++) 
         if(map[row][col] == ALIVE) 	putchar('#'); 
         else 	 putchar('-'); 
   } 
} 

void copyMap() {
   int row, col; 
   for(row = 0; row < MAXROW; row++) 
      for(col = 0; col < MAXCOL; col++) 
         map[row][col] = newmap[row][col]; 
}  

展示了解决八个假币问题的算法。在主函数中,首先生成包含了8个重量为10的假币的数组,然后随机选择一个位置来替换为输入的假币重量。接着调用eightcoins函数来根据不同情况比较假币的重量,找出假币是轻还是重。最后输出所有钱币的重量。
在eightcoins函数中,通过比较1-6号假币的总重量来确定7-8号假币是轻还是重;然后基于比较1-3号假币和4-5号假币的总重量来确定2号假币的情况;最后根据比较1-3号假币和4-5号假币的总重量来确定6号假币的情况。根据不同的情况选择调用compare函数来输出假币是重还是轻。
这个算法通过有效的比较方式,可以快速找出是轻还是重的假币。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/431745.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ArmSoM Rockchip系列产品 通用教程 之 UART 使用

1. UART 简介​ Rockchip UART (Universal Asynchronous Receiver/Transmitter) 基于16550A串口标准&#xff0c;完整模块支持以下功能&#xff1a; 支持5、6、7、8 bits数据位。支持1、1.5、2 bits停止位。支持奇校验和偶校验&#xff0c;不支持mark校验和space校验。支持接…

文物保护平台数据统计分析及预警-子系统专题分析

文物预防性监测与调控系统的监测统计分析子系统提供全面的文物状态及环境数据分析,为博物馆工作人员进行基于文物材质特性的专项保护提供相关科研辅助。主要的监测分析,包括各展厅文物统计分析、不同环境因素报表统计、以及监测调控设备统计分析等。 系统用户和文物管理人员可以…

onnx runtime文档学习2-torch TF简单示例

网上充斥着ONNX Runtime的简单科普&#xff0c;却没有一个系统介绍ONNX Runtime的博客&#xff0c;因此本博客旨在基于官方文档进行翻译与进一步的解释。ONNX runtime的官方文档&#xff1a;https://onnxruntime.ai/docs/ 如果尚不熟悉ONNX格式&#xff0c;可以参照该博客专栏…

Nodejs 第四十七章(redis主从复制)

Redis主从复制是一种数据复制和同步机制&#xff0c;其中一个Redis服务器&#xff08;称为主服务器&#xff09;将其数据复制到一个或多个其他Redis服务器&#xff08;称为从服务器&#xff09;。主从复制提供了数据冗余备份、读写分离和故障恢复等功能。 以下是Redis主从复制的…

redis06 redis事务

思维草图 redis事务认识 redis事务是一个单独的隔离操作&#xff0c;事务中的所有命令都会序列化、按顺序地执行&#xff0c;事务在执行的过程中&#xff0c;不会被其他客户端发送来的命令请求所打断。 redis事务的主要作用就是串联多个命令防止别的命令插队。 Multi、Exec、…

稀碎从零算法笔记Day9-LeetCode:最长公共前缀

题型&#xff1a;字符串 链接&#xff1a;14. 最长公共前缀 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述&#xff08;红字为笔者添加&#xff09; 编写一个函数来查找字符串数组中的最长公共前缀(前X个字母相同)。 如果不存在公共前缀&…

【数据结构和算法初阶(C语言)】复杂链表(随机指针,随机链表的复制)题目详解+链表顺序表结尾

目录 1.随机链表的复制 1.2题目描述 1.3题目分析 1.4解题&#xff1a; 2.顺序表和链表对比 2.1cpu高速缓存利用率 3.结语 1.随机链表的复制 一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random 该指针可以指向链表中的任何节点或空节点。 1.2题目描…

Discuz IIS上传附件大于28M失败报错Upload Failed.修改maxAllowedContentLength(图文教程)

下图&#xff1a;Discuz X3.5的系统信息&#xff0c;上传许可为1024MB(1GB) 论坛为局域网论坛&#xff0c;仅供内部同事交流使用&#xff01; 使用官方最新的Discuz! X3.5 Release 20231221 UTF-8 下图&#xff1a;选择上传附件&#xff08;提示可以最大上传100M&#xff09;…

【Unity】使用ScriptableObject存储数据

1.为什么要用ScriptableObject&#xff1f; 在游戏开发中&#xff0c;有大量的配置数据需要存储&#xff0c;这个时候就需要ScriptableObject来存储数据了。 很多人会说我可以用json、xml、txt&#xff0c;excel等等 但是你们有没有想过&#xff0c;假设你使用的是json&#x…

Python 面向对象编程——类的使用

一、学习目标 1&#xff0e;掌握类的定义和实例化对象。 2&#xff0e;熟练掌握类的构造函数__init__使用。 3&#xff0e;掌握类的继承机制和使用。 二、相关练习 1、定义一个玩具类Toy()&#xff0c;创建名字为“小汽车”、“手枪”和“积木”的玩具实例&#xff0c;计…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:多态样式)

设置组件不同状态下的样式。 说明&#xff1a; 从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 从API Version 11开始支持另一种写法attributeModifier&#xff0c;可根据开发者需要动态设置属性。 stateStyles stateStyl…

微信报修小程序源码

源码获取方式&#xff1a; 1、搜一搜 万能工具箱合集 然后点击资料库&#xff0c;即可获取资源 一、先看Demo&#xff08;已更新至4.0.0&#xff09; 想看界面图片的&#xff0c;辛苦你爬一下楼&#xff0c;点击下方查看资源&#xff0c;进入官方demo 二、功能介绍 1、当前版…

二路归并排序的算法设计和复杂度分析and周记

数据结构实验报告 实验目的: 通过本次实验&#xff0c;了解算法复杂度的分析方法&#xff0c;掌握递归算法时间复杂度的递推计算过程。 实验内容&#xff1a; 二路归并排序的算法设计和复杂度分析 实验过程&#xff1a; 1.算法设计 第一步&#xff0c;首先要将数组进行…

计算机网络-第3章 数据链路层

主要内容&#xff1a;两个信道及对应的协议&#xff1a;点对点信道和广播信道&#xff0c;扩展以太网和高速以太网 本章的分组转发为局域网内的转发&#xff0c;不经过路由&#xff0c;网络层分组转为为网络与网络之间的转发&#xff0c;经过路由。局域网属于网络链路层的范围…

苹果群控功能解析与代码分享!

随着移动互联网的飞速发展&#xff0c;智能设备日益普及&#xff0c;苹果设备因其出色的用户体验和稳定的性能受到了广大用户的喜爱&#xff0c;然而&#xff0c;对于开发者而言&#xff0c;如何有效地管理和控制大量的苹果设备成为了一个亟待解决的问题。 一、苹果群控功能概…

00. Nginx总结-错误汇总

/www/wangmingqu/index.html" is forbidden (13: Permission denied) 错误图片 错误日志 2024/01/09 22:26:27 [error] 1737#1737: *1 "/www/wangmingqu/index.html" is forbidden (13: Permission denied), client: 192.169.1.101, server: www.wangmingqu.c…

回收小程序开发,降低企业成本,提高回收利润

近年来&#xff0c;人们的回收意识逐渐强烈&#xff0c;废品回收行业发展非常迅猛&#xff0c;促进了我国的资源回收再利用&#xff0c;我国回收行业也将迎来新的发展机遇。 随着市场规模的扩大&#xff0c;回收行业也正在逐步进行创新。在互联网的支持下&#xff0c;行业中也…

只会Vue的我,用两天学会了react,这个方法您也可以

公众号&#xff1a;需要以下pdf&#xff0c;关注下方 2023已经过完了&#xff0c;让我们来把今年的面试题统计号&#xff0c;来备战明年的金三银四&#xff01;所以&#xff0c;不管你是社招还是校招&#xff0c;下面这份前端面试工程师高频面试题&#xff0c;请收好。 背景 由…

基于springboot实现保险信息网站系统项目【项目源码+论文说明】

基于springboot实现保险信息网站系统演示 摘要 随着互联网的不断发展&#xff0c;现在人们获取最新资讯的主要途径来源于网上新闻&#xff0c;当下的网上信息宣传门户网站的发展十分的迅速。而保险产品&#xff0c;作为当下人们非常关注的一款能够给人们带来医疗、生活、养老或…

保护模式笔记九 中断门和IDT(中断描述符表)

段选择子&#xff1a; 先直观认识一下GDT和段选择子在逻辑地址转换为线性地址中的作用&#xff0c;例如&#xff1a; 给出逻辑地址&#xff1a;21h:12345678h&#xff0c;需要将其转换为线性地址 a. 选择子SEL21h0000000000100 0 01b&#xff0c;他代表的意思是&#xff1a…