特征值和特征向量及其在机器学习中的应用

特征值和特征向量是线性代数中的概念,用于分析和理解线性变换,特别是由方阵表示的线性变换。它们被用于许多不同的数学领域,包括机器学习和人工智能。

在机器学习中,特征值和特征向量用于表示数据、对数据执行操作以及训练机器学习模型。

在人工智能中,特征值和特征向量用于开发图像识别、自然语言处理和机器人等任务的算法。


1. 特征值 (λ):方阵 A 的特征值是一个标量(单个数字)λ,使得存在一个非零向量 v(特征向量),其中以下等式成立:

AV = λv

换句话说,当您将矩阵 A 乘以特征向量 v 时,您会得到一个新向量,它只是 v 的缩放版本(按特征值 λ 缩放)。


2.特征向量:上面提到的向量v称为特征值λ对应的特征向量。特征向量仅在乘以矩阵 A 时改变尺度(大小);他们的方向保持不变。

从数学上讲,要找到特征值和特征向量,您通常可以求解以下方程来得到 λ 和 v:

(A — λI)v = 0

在哪里:

  • A 是您要查找特征值和特征向量的方阵。
  • λ 是您要查找的特征值。
  • I 是单位矩阵(对角线上有 1,其他地方有 0 的对角矩阵)。
  • v 是您要查找的特征向量。

求解该方程涉及找到使矩阵 (A — λI) 奇异(即其行列式为零)的 λ 值,然后找到相应的 v 向量。


特征值和特征向量在机器学习和人工智能中的使用:

  1. 降维 (PCA):在主成分分析 (PCA) 中,您可以计算数据协方差矩阵的特征向量和特征值。具有最大特征值的特征向量(主成分)捕获数据中的最大方差,可用于降低数据集的维数,同时保留重要信息。
  2. 图像压缩:特征向量和特征值用于图像压缩的奇异值分解 (SVD) 等技术。通过用特征向量和特征值来表示图像,您可以减少存储需求,同时保留基本的图像特征。
  3. 支持向量机:支持向量机 (SVM) 是一种机器学习算法,可用于分类和回归任务。SVM 的工作原理是找到一个将数据分为两类的超平面。SVM的核矩阵的特征值和特征向量可以用来提高算法的性能。
  4. 图论:特征向量在分析网络和图方面发挥着作用。它们可用于查找社交网络或其他互连系统中的重要节点或社区。
  5. 自然语言处理 (NLP):在 NLP 中,特征向量可以帮助识别大型文档术语矩阵中最相关的术语,从而支持用于文档检索和文本摘要的潜在语义分析 (LSA) 等技术。
  6. 机器学习算法:特征值和特征向量可用于分析机器学习算法的稳定性和收敛性,特别是在深度学习中处理神经网络中的权重矩阵时。

特征值和特征向量的示例

示例 1:主成分分析 (PCA)

PCA是机器学习和数据分析中广泛使用的降维技术。它利用特征向量和特征值来减少特征数量,同时保留尽可能多的信息。

假设您有一个包含两个变量 X 和 Y 的数据集,并且您希望将其减少到一维。您计算数据的协方差矩阵并找到其特征向量和特征值。假设您获得以下内容:

  • 特征值 1 (λ₁) = 5
  • 特征值 2 (λ2) = 1
  • 特征向量 1 (v₁) = [0.8, 0.6]
  • 特征向量 2 (v2) = [-0.6, 0.8]

在 PCA 中,您将选择与最大特征值对应的特征向量作为主成分。在这种情况下,它是 v₁。您将数据投影到该特征向量上以将其减少到一维,从而有效地捕获数据中的大部分方差。

示例 2:使用奇异值分解 (SVD) 进行图像压缩

SVD 是一种矩阵分解技术,利用特征值和特征向量进行图像压缩。

考虑表示为矩阵 A 的灰度图像。对此矩阵执行 SVD 以获得三个矩阵:U(左奇异向量)、Σ(奇异值对角矩阵)和 V^T(右奇异向量)。

  • Σ 中的奇异值代表每个分量在重建图像中的重要性。
  • U 和 V^T 的列是 A 的协方差矩阵的特征向量。

通过仅保留奇异值的子集(及其相应的特征向量),您可以在压缩图像的同时保留其基本特征。这通常用于图像存储和传输等应用。

示例 3:Google PageRank 算法

特征向量在 Google 的 PageRank 算法中发挥着重要作用,该算法决定了网页在搜索结果中的重要性。在此算法中,网页表示为图中的节点,页面之间的超链接创建一个矩阵。

该矩阵的主特征向量表示网页的 PageRank 分数。相应的特征值有助于确定网页的整体重要性。这使得谷歌可以根据重要性对网页进行排名,帮助用户找到相关内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/429449.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

NOIP 2009普及组初赛试题及解析

NOIP 2009普及组初赛试题及解析 一. 单项选择题 (共20题,每题1.5分,共计30分。每题有且仅有一个正确答案.)。二. 问题求解(共2题,每题5分,共计10分)三. 阅读程序写结果(共…

Vue.js 深度解析:模板编译原理与过程

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

网络学习:SMart link技术与Monitor link技术

目录 一、SMart link技术 1.1、SMart link技术简介 1.2、SMart link技术原理及基础知识点 1、应用场景(举例): 2、运行机制 3、保护vlan 4、控制VLAN 5、Flush报文 6、SMart link的负载分担机制 7、SMart link角色抢占模式 二、Mo…

YOLOv5目标检测学习(1):yolo系列算法的基础概念

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、基于深度学习的目标检测需要哪些步骤?二、数据准备(即准备数据集)1.目标检测的数据集如何获取?2.数据集包括…

Python报错ModuleNotFoundError: No module named ‘numpy‘

原因:缺少“numpy” 进入python安装路径,script路径内 在路径下启动终端 01.更新numpy python -m pip install --upgrade pip 02.安装 pip install numpy 03.运行python python 04.导入包 from numpy import * 问题已解决。

MySQL学习Day25——数据库其他调优策略

一、数据库调优的措施: 1.调优的目标: (1)尽可能节省系统资源,以便系统可以提供更大负荷的服务 (2)合理的结构设计和参数调整,以提高用户操作的响应速度 (3)减少系统的瓶颈,提高MySQL数据库整体的性能; 2.如何定位调优:用户的反馈、日志…

政安晨【TypeScript高级用法】(二):泛型与命名空间

TypeScript的泛型允许我们在定义函数、类和接口时使用参数化类型,使得这些实体可以适应不同类型的数据。泛型可以增加代码的重用性和灵活性。 同时,TypeScript的命名空间提供了一种在全局命名空间中组织代码的方式,可以避免全局变量污染和命…

项目打包时报错 There are test failures.

报错原因是 test测试类有问题 我们可直接选择跳过测试类打包 如下 此时再次打包就成功了

高级软件开发知识点

流程 算法题简历上项目用到技术、流程、遇到问题HR 准备 常考的题型和回答思路刷100算法题,理解其思想,不要死记最近一家公司所负责的业务和项目: 项目背景、演进之路,有哪个阶段,每个阶段主要做什么项目中技术选型…

vue2和vue3的区别介绍

Vue.js 是一个流行的前端JavaScript框架,用于构建用户界面和单页应用程序。自从Vue.js首次发布以来,它就因其简洁的API、灵活的架构和易于上手的特点而受到了广泛的欢迎。Vue.js的第二个主要版本(Vue 2)发布于2016年,而…

AutoGPT实现原理

AutoGPT是一种利用GPT-4模型的自动化任务处理系统,其主要特点包括任务分配、多模型协作、互联网访问和文件读写能力以及上下文联动记忆性。其核心思想是通过零样本学习(Zero Shot Learning)让GPT-4理解人类设定的角色和目标,并通过…

正则表达式在QT开发中的应用

一.正则表达式在QT开发中的使用: 1.模式匹配与验证:正则表达式最基本的作用就是进行模式匹配,它可以用来查找、识别或验证一个字符串是否符合某个特定的模式。例如,在表单验证中,可以使用正则表达式来检查用户输入的邮…

微擎安装,卡在“安装微擎”界面

进入install.php,点击【在线安装】 下一步配置数据库,开始安装系统 然后显示进度条,进度条一闪而过 然后就没有进度条显示了,一直卡在这里 第一次等了好久, 删除目录下的文件,重装还是这样 再重启服务器&…

C语言数组作为函数参数

有两种情形; 一种是数组元素作为函数实参;一种是数组名作为函数参数; 新建一个VC6单文档工程; void printshz(int , CDC* , int , int ); double getav(int a[5]); ...... void CShzcshView::OnDraw(CDC* pDC) {CShzcshDoc* pDo…

electron+vue3全家桶+vite项目搭建【29】封装窗口工具类【3】控制窗口定向移动

文章目录 引入实现效果思路声明通用的定位对象主进程模块渲染进程测试效果 引入 demo项目地址 窗口工具类系列文章: 封装窗口工具类【1】雏形 封装窗口工具类【2】窗口组,维护窗口关系 封装窗口工具类【3】控制窗口定向移动 很多时候,我们想…

python识别并控制操作已打开的浏览器进行自动化测试

前提:已安装python和selenium 一、将浏览器以debugger模式打开 打开方法: 1.右击浏览器,选择属性: 2.在目标中加上 --remote-debugging-port9222 --user-data-dir"C:\selenum\AutomationProfile" 二、识别代码 from…

npm、cnpm、pnpm使用详细

简介: npm:npm(Node Package Manager)是Node.js的包管理工具,用于安装、更新、卸载Node.js的模块和包。它提供了一个命令行界面,使得开发者可以轻松地管理项目依赖。npm 是 nodejs 中的一部分,…

[linux] 使用 kprobe 观察 tcp 拥塞窗口的变化

tcp 中拥塞窗口用来做拥塞控制。 在发送侧,要发送数据的时候会基于拥塞窗口进行判断,当前这个包还能不能发送出去。 tcp 发包函数是 tcp_write_xmit(),在这个函数中调用 tcp_cwnd_test() 来判断当前拥塞窗口让不让发包。从 tcp_cwnd_test() 函…

【推荐算法系列十八】:DSSM 召回算法

参考 推荐系统中 DSSM 双塔模型汇总(二更) DSSM 和 YouTubeDNN 都是比较经典的 U2I 模型。 U2I 召回 U2I 召回也就是 User-to-Item 召回,它基于用户的历史行为以及用户的一些个人信息,对系统中的候选物品进行筛选,挑…

C++ Primer Plus Sixth Edition - 下载电子书与源代码

C Primer Plus Sixth Edition - 下载电子书与源代码 1. C Primer Plus, 6th Edition1.1. Download the source code files1.2. 下载源代码文件 2. C Primer Plus, Sixth Edition (PDF)3. Table of ContentsReferences 1. C Primer Plus, 6th Edition C Primer Plus, 6th Editi…