AI加速引擎PAI-TorchAcc:整体介绍与性能概述

作者:沈雯婷、黄奕桐、艾宝乐、王昂、李永

1、简介

PAI-TorchAcc(Torch Accelerator)是阿里云人工智能平台开发的Pytorch上的大模型训练加速框架。

PAI-TorchAcc提供了一套基于Pytorch的简洁、易用的接口,无需进行模型转换就可以无缝地接入HuggingFace上的模型,并用多种分布式策略进行训练加速。

PAI-TorchAcc借助社区PyTorch/XLA,通过 LazyTensor 技术将Pytorch代码转换为静态执行图,基于计算图,结合阿里云上的计算资源情况,进行了大量的GPU硬件上模型训练的针对性分布式优化、计算优化。

得益于简单的模型接入方式、基于计算图的优化,PAI-TorchAcc能够灵活地支持各种大模型的多种规模,兼容不同的硬件。PAI-TorchAcc支持常见大模型1B-175B的训练,训练吞吐相对PyTorch原生、Megatron-LM均有提升,如LLaMA系列模型,相比PyTorch原生提升了140%,相比Megatron-LM提升了5%,在A100上MFU达到70%,8卡到128卡线性加速比达到15.6X。

2、背景和需求

2.1 背景

  • 大模型训练

近年来,大语言模型、视频生成类模型迅速发展,它们基于庞大的文本、图片、视频等数据集进行训练,执行多种自然语言处理、图像生成、视频生成等任务,具备强大的理解和生成能力。随着计算资源和技术的不断进步,大模型的参数量已增长到数亿甚至数万亿级别,例如LLaMA、GPT-3、通义千问、Sora等,这些模型在许多基准测试上表现出了前所未有的性能。

然而,训练大模型需要极高的成本。比如使用Megatron-LM预训练一个OPT-175B模型需要上千张A100训练2个月[1],硬件利用率MFU约47%,期间因为硬件故障经历了几十次checkpoint的加载和续训练。使用PyTorch FSDP进行LLaMA-2-70B的微调也需要16张A100运行约13.5小时[2]。NVIDIA A100、H100等硬件资源价格高昂且不易获取,市面上也逐渐出现了其他性价比更高的硬件资源。

加速不同的大模型的预训练、续训练、微调,充分利用不同的硬件资源,提升资源利用率,是降低大模型训练成本的一个有效途径。

  • Megatron-LM

NVIDIA Megatron-LM[3]是一个基于 PyTorch 的分布式训练框架,用来训练基于Transformer的大模型。Megatron-LM综合应用了数据并行、模型并行、流水并行来实现GPT-3等特定模型的训练。然而,不同的大模型、训练数据集接入Megatron-LM十分不灵活,需要将checkpoint和数据格式进行转换。同时,Megatron-LM虽然对一些模型算子做了手动的优化,在面对不同模型的不同计算模式时,难以自动地应用这种手动的优化。

  • DeepSpeed

DeepSpeed[4]是微软开源的一个PyTorch上的大模型分布式训练框架,支持ZeRO和流水并行,并且可以结合Megatron-LM运行3D并行。DeepSpeed已经成为HuggingFace transformers库中一个训练组件。然而DeepSpeed性能表现较差,并且和Megatron-LM同样存在面对不同计算模式时无法灵活优化的限制。

  • PyTorch/XLA

PyTorch/XLA[5]将PyTorch和 OpenXLA相结合,使用LazyTenor技术,将PyTorch代码转换为静态执行图,在静态图上进行计算图优化和后端编译优化。Pytorch/XLA主要是针对TPU 场景进行优化,在GPU上还存在一定问题和优化空间,如不支持Transformers 模型常用的FlashAttention加速算子、不支持 torchrun 拉起、计算通信 Overlap 差、显存开销大等问题。

2.2 需求

基于以上背景,我们需要一个大模型分布式训练引擎,能够方便接入多变的PyTorch模型,尤其是Transformer类模型,兼容多种硬件。在不同模型变化的计算模式下,在不同硬件变化的硬件架构和计算、访存能力下,能够自动地对计算进行优化,尤其在阿里云的硬件上能够表现较高的性能。同时,大模型导致单卡内存和显存无法完全放下,不同的模型需要结合不同的分布式策略,合理通信,完成多卡训练并提升线性加速比。

3、PAI-TorchAcc核心技术特性

灵活的模型接入

  • 支持LLaMA系列、Qwen、BaiChuan、ChatGLM、OLMo、Bloom等常见的大模型1B-175B的训练;
  • 无缝对接HuggingFace中的模型;
  • 一键接入和加速Pytorch模型。

千亿级模型参数量

  • 已经支持1B到175B大模型训练;

全面的训练模式

  • 支持混合精度训练,包括Float32、Float16、BFloat16等;
  • 支持Pytorch模型的预训练、微调和续训练。

组合的分布式策略

  • 支持Data Parallel、Tensor Parallel、Sequence Parallel、Fully Sharded Data Parallel、Pipeline等分布式策略及其组合。

自动计算优化和显存优化

  • 使用手动的Gradient Checkpoint和自动的Rematerialization降低峰值显存;
  • 自动进行显存规划和管理,降低峰值显存和减少显存碎片化;
  • 自动对Kernel进行编译优化,提高计算效率;
  • 自动接入SOTA的高性能Kernel。

兼容多种硬件

  • 兼容NVIDIA A100/800, H100/800, V100等;
  • 兼容阿里云上灵骏集群的硬件资源。

与现有框架对比

模型支持分布式训练策略算子优化性能
DeepSpeedHuggingFace模型,用户自定义模型ZeRO/PP手写Kernel优化⭐️
Megatron只有GPT/BERT/T5等少数模型DP/TP/PP手写Kernel优化⭐️⭐️⭐️
PAI-TorchAccHuggingFace模型,用户自定义模型DP/FSDP/TP/PP/SP自动编译优化&手写Kernel优化⭐️⭐️⭐️

4、PAI-TorchAcc架构

4.1 总体架构

PAI-TorchAcc的架构自顶向下分为以下几层:

  • 模型层:支持计算机视觉、自然语言处理、语音合成等深度学习模型训练的加速;
  • 算法库:支持HuggingFace Transfomers、PAI-EasyNLP、TIMM等算法库构建的模型;
  • 前端:支持以PyTorch为前端语言的模型训练;
  • Lowering:使用LazyTensor、Symbolic Trace等技术将前端代码转换为静态执行图;
  • IR:使用多层中间表达,包含High-Level的设备无关的IR和Low-Level的设备相关的IR,基于两层IR上分别做计算图优化和后端编译优化。
  • 编译优化引擎:TorchAcc的编译优化引擎包括计算图优化引擎TorchAcc Compiler和多种后端编译优化引擎BladeDISC和OpenXLA。基于两层IR,进行分布式优化、显存优化、通信优化、计算优化以及算子调度和显存管理等优化,生成优化的设备码。
  • 硬件:最终产生硬件相关的设备码在不同算力、带宽和显存的硬件设备上执行。

4.2 接口

PAI-TorchAcc抽取了一套简洁的接口,灵活接入并加速任意的Pytorch模型,而不需要改动原有的模型代码。

通过 PAI-TorchAcc 加速模型训练一般需要三步:

  1. 定义 torchacc.Config,并指定加速选项。
  2. 调用 torchacc.accelerate,并传入model和config,完成加速训练的准备。
  3. 通过 torchacc.AsyncLoader对 torch dataset_loader 进行封装,加速数据加载。
model = ...
  dataloader = ...

+ # 一行代码加速模型,也可传入Config配置更丰富的加速功能,如分布式策略、编译优化选项等
+ model = torchacc.accelerate(model)

+ # 异步加速数据加载
+ dataloader = torchacc.AsyncLoader(dataloader, model.device)

  model.train()
  for source, labels in dataloader:
      ...

4.3 编译优化

PAI-TorchAcc通过LazyTensor、Symbolic Trace等技术将前端Pytorch代码转换为静态执行图,并在静态图上进行自动优化,在分布式的硬件设备上高效运行。

4.4 计算图优化

在Tensor Graph上进行优化,这层优化基于High-Level IR——StableHLO进行。

  • 分布式: 通过分图和通信算子插入,完成流水并行、SPMD等。
  • 显存优化:通过算子级别的显存Live range和复用分析、静态调度策略、自动重算、显存管理优化等来减少显存的峰值和碎片化。
  • 计算优化:通过CSE等简化计算,通过算子大粒度融合来优化访存密集型算子,减少kernel launch,减少访存,提升计算效率;通过自动的计算图匹配重写的方式接入Flash Attention等高性能Kernel。
  • 通信优化:通过通信算子的合并、拆分、异步化以及算子的调度来提升通信效率,提高计算和通信的overlap。

4.5后端编译优化

在Buffer Graph上进行优化,这层优化基于Low-Level的IR,包括LHLO、LLVM IR和多种MLIR的dialect。

  • 多后端:支持OpenXLA和阿里自研的BladeDISC两种编译后端;
  • Lowering和Codegen:将上层的StableHLO Lowering成LHLO和多种MLIR的dialect,并在各级Lowering过程中进行优化,最终表达为LLVM IR,通过LLVM生成针对硬件的优化代码;
  • Custom Call:High-Level IR自动Pattern rewrite的优化kernel,通过custom call调用。

5、实践案例和性能

PAI-TorchAcc在A100上能够达到70%的MFU,并且在多卡下几乎线性扩展(8卡到128卡加速比15.6X),在灵活支持各种模型的基础上,性能能够高于Megatron-LM。我们在常见的开源大模型上做了性能测试,使用相同的硬件资源,PAI-TorchAcc的训练吞吐相对PyTorch原生、Megatron均有提升,如LLaMA系列模型相对PyTorch原生提升了140%,相对Megatron提升了5%。

我们将在后续的系列文章中提供一个具体的实践案例:PAI-TorchAcc在OLMo模型训练上的接入示例和加速效果,并且给出加速的来源分析。

6、总结和未来展望

PAI-TorchAcc可以灵活接入Pytorch模型,并通过并行化策略、显存优化、计算优化和调度优化等方法来加速大模型以及视觉类、语音类模型的训练。PAI-TorchAcc已经在常见大模型上如LLaMA、LLaMA-2、BaiChuan、ChatGLM、QWen、OLMo、Bloom取得了不错的效果。未来我们将从以下方向继续深入优化,以支持更多的场景,取得更好的加速效果。

  1. Graph Capture优化和子图编译:在生成计算图的过程中遇到无法识别的算子将导致编译失败,我们将进一步优化Graph Capture,并支持子图的编译优化。
  2. 自动分布式:PAI-TorchAcc提供了多种分布式策略,然而在不同的模型和硬件上,使用哪种组合的分布式策略、如何进行分图能够取得最优的性能,仍然需要根据经验手动配置。PAI-TorchAcc将借助静态计算图和模型、硬件特性,做自动的分布式。
  3. AutoGC:借助静态计算图和模型、硬件特性,自动进行checkpoint选点。
  4. 动态Shape性能优化:动态Shape导致重编译引起的性能下降,当前我们通过分桶的方式减少了重编译的次数,仍然存在大量的padding,如何做更高性能的动态Shape支持,是一个深入优化的方向。
  5. 自研编译优化引擎BladeDISC的优化。

引用

[1] https://arxiv.org/pdf/2205.01068.pdf

[2] https://huggingface.co/blog/ram-efficient-pytorch-fsdp

[3] https://github.com/NVIDIA/Megatron-LM

[4] https://github.com/microsoft/DeepSpeed

[5] https://github.com/pytorch/xla

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/428086.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HTTP笔记(五)

个人学习笔记(整理不易,有帮助点个赞) 笔记目录:学习笔记目录_pytest和unittest、airtest_weixin_42717928的博客-CSDN博客 目录 一:HTTP报文首部 (1)HTTP请求报文 (2&#xff09…

【C++庖丁解牛】默认成员函数

📙 作者简介 :RO-BERRY 📗 学习方向:致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 📒 日后方向 : 偏向于CPP开发以及大数据方向,欢迎各位关注,谢谢各位的支持 目录 前言1. 构造函数1.1 …

Linux配置网卡功能

提示:工具下载链接在文章最后 目录 一.network功能介绍二.配置network功能2.1 network_ip配置检查 2.2 network_br配置2.2.1 配置的网桥原先不存在检查2.2.2 配置的网桥已存在-修改网桥IP检查2.2.3 配置的网桥已存在-只添加网卡到网桥里检查 2.3 network_bond配置检查 2.4 netw…

数据结构与算法-选择排序

引言 在计算机科学中,数据结构和算法是两个至关重要的基石。它们共同决定了程序的效率、可读性和可维护性。本文我们将聚焦于一种基础而直观的排序算法——选择排序,并探讨其内在的工作机制以及在实际应用中的优缺点。 一、什么是选择排序? …

LeetCode 刷题 [C++] 第763题.划分字母区间

题目描述 给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 …

如何在Vue中实现事件处理?

Vue是一种流行的JavaScript框架,广泛应用于前端开发。在Vue中,事件处理是一个非常关键的概念,可以帮助我们实现用户与页面的交互,今天我们就来探讨一下如何在Vue中实现事件处理。 首先,让我们先了解一下在Vue中如何绑…

微信小程序开发:接入阿里云人像动漫化api接口

前面我已经把腾讯云的人像转动漫化接口接到了我的小程序里,但是和阿里云的对比后,发现阿里云的效果会更好一些,且支持更多特效,如下: 我比较喜欢这个3D特效风格,动画3D也可以,大家拭目以待。 话…

波奇学Liunx:信号的产生,保存,处理

信号的产生,信号的保存,信号的处理 在操作系统中进程接受到信号会保存,产生 进程必须识别和能够处理信号,处理信号是进程的内置功能 进程收到信号时不一定会立即执行,所以进程必然有一套识别,保存&#xff…

Nodejs 第四十四章(redis基本使用)

字符串的操作 SET key value [NX|XX] [EX seconds] [PX milliseconds] [GET]key:要设置的键名。value:要设置的值。NX:可选参数,表示只在键不存在时才设置值。XX:可选参数,表示只在键已经存在时才设置值。…

MySQL字符集和比较规则

MySQL字符集和比较规则 字符集和比较规则简介 字符集: 描述字符与二进制数据的映射关系 比较规则:比较指定字符集中的字符的规则 字符集 我们知道,计算机无法直接存储字符串,实际存储的都是二进制数据。字符集是有限的&#xff…

windos 批量自定义 重命名

有时候需要批量重命名,window全选重命名格式又不能自定义,所以写了一个批处理文件来完成,可以自定义文件名格式 1.使用用方法 echo off setlocal enableextensions enabledelayedexpansion set i1 for /f %%i in (cd) do set var%%i for /r …

Python打发无聊时光:13.用pywin32库制作电脑本地快捷应用

第一步:新建一个simple_app.py 装库pywin32库 pip install pywin32 新建一个simple_app.py,复制下面代码,或者可以自己设计内容给 import tkinter as tkclass AnimatedGUI:def __init__(self, root):self.root rootself.root.title(&quo…

HTTP/2、HTTP/3分别解决了什么问题

总的来说就是HTTP/1.1是请求-响应模型导致队头阻塞问题,HTTP2是TCP层面导致队头阻塞问题 HTTP/2 多路复用,解决了HTTP/1.1队头阻塞问题 HTTP/1.1 的实现是基于请求-响应模型的。同一个连接中,HTTP 完成一个事务(请求与响应&…

华为OD机试真题C卷-篇6

100分值题 宽度最小的子矩阵部门人力分配电脑病毒感染会议室占用时间段路口最短时间问题5G网络建设 宽度最小的子矩阵 给定一个n行 * m列的矩阵;给定一个k个整数的数组k_list;在n*m的矩阵中找一个宽度最小的子矩阵,该子矩阵包含k_list中所有…

【三维重建】VastGaussian:用于大场景重建的大3D Gaussian(CVPR 2024)

题目:VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction 来源:清华大学;华为诺亚;中国科学院 链接:https://vastgaussian.github.io/ 总结:VastGaussian:基于3D GS的分块优化重…

2024年天津市安全员B证证模拟考试题库及天津市安全员B证理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年天津市安全员B证证模拟考试题库及天津市安全员B证理论考试试题是由安全生产模拟考试一点通提供,天津市安全员B证证模拟考试题库是根据天津市安全员B证最新版教材,天津市安全员B证大纲整理…

【Linux】Linux原生异步IO:AIO

1、IO模型 1.1 简述 相信大家在搜索的时候,都会看到下面这张图,IO的使用场景:同步、异步、阻塞、非阻塞,可以组合成四种情况: 同步阻塞I/O: 用户进程进行I/O操作,一直阻塞到I/O操作完成为止。同步非阻塞I/O: 用户程序可以通过设置文件描述符的属性O_NONBLOCK,I/O操作可…

世界的本质是旋转(5)-在复平面上驱动软件无线电SDR交换BPSK波形

在上一篇文章中,我们介绍了复平面、拍照采样的一些思维实验。从本节开始,转入现实应用,通过控制复平面向量的位置,实现一个完整的BPSK全双工通信通道。 发射方:通过控制复平面向量在各个时刻的位置来携带信息的技术&a…

Socks5代理协议:原理、应用与优势

在计算机网络中,代理协议是一种用于转发客户端请求的机制。Socks5是其中一种广泛使用的代理协议。它主要工作在传输层和应用层之间,位于OSI参考模型的第五层(会话层)。其设计初衷是为了帮助授权用户突破防火墙限制,获取…

【洛谷 P8682】[蓝桥杯 2019 省 B] 等差数列 题解(数学+排序+辗转相除法)

[蓝桥杯 2019 省 B] 等差数列 题目描述 数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一部分的数列,只记得其中 N N N 个整数。 现在给出这 N N N 个整数,小明想知道包含这 N N N 个整数的最短的等差数列有几项? 输…