总的来说就是HTTP/1.1是请求-响应模型导致队头阻塞问题,HTTP2是TCP层面导致队头阻塞问题
HTTP/2
多路复用,解决了HTTP/1.1队头阻塞问题
HTTP/1.1 的实现是基于请求-响应模型的。同一个连接中,HTTP 完成一个事务(请求与响应),才能处理下一个事务,也就是说在发出请求等待响应的过程中,是没办法做其他事情的,如果响应迟迟不来,那么后续的请求是无法发送的,也造成了队头阻塞的问题。
HTTP/2 实现了 Stream 并发,多个 Stream 只需复用 1 个 TCP 连接,节约了 TCP 和 TLS 握手时间,以及减少了 TCP 慢启动阶段对流量的影响。不同的 Stream ID 可以并发,即使乱序发送帧也没问题,比如发送 A 请求帧 1 -> B 请求帧 1 -> A 请求帧 2 -> B 请求帧2,但是同一个 Stream 里的帧必须严格有序。
压缩HTTP头,节省报文体积
因为大部分HTTP请求的header是重复的,尤其是长长的cookie,通过静态表和 Huffman 编码的方式,将体积压缩了近一半,而且针对后续的请求头部,还可以建立动态表,将体积压缩近 90%,大大提高了编码效率,同时节约了带宽资源。
支持服务器主动推送资源
HTTP/3
基于UDP实现了一个可靠的传输协议QUIC,解决了TCP队头阻塞问题
HTTP/2 多个请求是跑在一个 TCP 连接中的,那么当 TCP 丢包时,整个 TCP 都要等待重传,那么就会阻塞该 TCP 连接中的所有请求。
TCP与TLS的握手时延迟
发起 HTTP 请求时,需要经过 TCP 三次握手和 TLS 四次握手(TLS 1.2)的过程,因此共需要 3 个 RTT 的时延才能发出请求数据。
网络迁移需要重新连接
一个 TCP 连接是由四元组(源 IP 地址,源端口,目标 IP 地址,目标端口)确定的,这意味着如果 IP 地址或者端口变动了,就会导致需要 TCP 与 TLS 重新握手,这不利于移动设备切换网络的场景,比如 4G 网络环境切换成 WiFi。
这些问题都是 TCP 协议固有的问题,无论应用层的 HTTP/2 在怎么设计都无法逃脱。要解决这个问题,就必须把传输层协议替换成 UDP,这个大胆的决定,HTTP/3 做了!
QUIC协议的提出!!!
用UDP代替TCP,我们都知道UDP是一个简单不可靠的传输协议,UDP包之间不需要有序,而且不需要建立连接,即没有握手挥手,那自然是快的。
但是在传输数据前虽然需要 QUIC 协议握手,这个握手过程只需要 1 RTT,握手的目的是为确认双方的「连接 ID」,连接迁移就是基于连接 ID 实现的(而非源 IP 地址,源端口,目标 IP 地址,目标端口四元组)。
当然,HTTP/3 不仅仅只是简单将传输协议替换成了 UDP,还基于 UDP 协议在「应用层」实现了 QUIC 协议,它具有类似 TCP 的连接管理、拥塞窗口、流量控制的网络特性,相当于将不可靠传输的 UDP 协议变成“可靠”的了,所以不用担心数据包丢失的问题。
每个数据包都有一个序号唯一标识。当某个流中的一个数据包丢失了,即使该流的其他数据包到达了,数据也无法被 HTTP/3 读取,直到 QUIC 重传丢失的报文,数据才会交给 HTTP/3。
而其他流的数据报文只要被完整接收,HTTP/3 就可以读取到数据。这与 HTTP/2 不同,HTTP/2 只要某个流中的数据包丢失了,其他流也会因此受影响。
QUIC 协议并不是与 TLS 分层,而是 QUIC 内部包含了 TLS,它在自己的帧会携带 TLS 里的“记录”,再加上 QUIC 使用的是 TLS 1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与密钥协商,甚至在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果。