深度学习目标检测】二十二、基于深度学习的肺炎检测系统-含数据集、GUI和源码(python,yolov8)

肺炎尽管很常见,但准确诊断是一项困难的任务。它要求训练有素的专家对胸部X光片进行检查,并通过临床病史,生命体征和实验室检查进行确认。肺炎通常表现为胸部X光片上一个或多个区域的阴影(opacity)增加。但是,由于肺部有许多其他状况,例如体液超负荷(肺水肿),出血,体液丢失(肺不张或塌陷),肺癌,放疗后或手术改变也会产生阴影(opacity),因此对胸部X光片肺炎进行诊断非常复杂。在肺外,胸膜腔积液(胸腔积液)也表现为胸部X光片的阴影(opacity)增加。 患者的拍片位置和吸气深度之类的许多因素可能会改变胸部X光片的外观,使解释更加复杂。临床医生因此要读取大量的图像。北美放射学会(RSNA®) 因此希望通过ML的手段自动定位肺部阴影(opacity),以便优先进行检查并加快检查速度。

本文介绍了基于深度学习yolov8的肺炎检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

本文数据集来自https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview

该数据集包含5950个训练数据,662个测试数据,数据如下图:

为了使用yolov8算法进行训练,需要将该数据转换为yolov8格式,本文提供转换好的数据集下载连接:RSNA Pneumonia(RSNA肺炎)yolov8格式数据集,该数据集包含5950个训练数据,662个测试数据

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件rsna_pneumonia.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\rsna_pneumonia_yolov8  # 替换为自己的数据集路径
train: images/train 
val: images/val 
test: images/test  
 
# Classes
names:
  0: pneumonia

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo detect train project=rsna_pneumonia name=train exist_ok data=rsna_pneumonia/rsna_pneumonia.yaml model=yolov8n.yaml epochs=100 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=rsna_pneumonia/train/weights/best.pt data=rsna_pneumonia/rsna_pneumonia.yaml

精度如下:

# Ultralytics YOLOv8.1.20 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
# YOLOv8n summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning D:\DeepLearning\datasets\csdn\rsna_pneumonia_yolov8\labels\val.cache... 607 images, 55 backgrounds, 0 corrupt: 100%|██████████| 662/662 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 42/42 [00:12<00:00,  3.47it/s]
#                    all        662        962      0.541      0.559      0.539      0.225
# Speed: 0.5ms preprocess, 7.0ms inference, 0.0ms loss, 2.5ms postprocess per image

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')
 
image_path = 'test.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的肺炎检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/426766.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

足球青训俱乐部|基于Springboot的足球青训俱乐部管理系统设计与实现(源码+数据库+文档)

足球青训俱乐部管理系统目录 目录 基于Springboot的足球青训俱乐部管理系统设计与实现 一、前言 二、系统设计 1、系统架构设计 三、系统功能设计 1、管理员登录界面 2、公告信息管理界面 3、学员管理界面 4、商品信息管理界面 5、课程安排管理界面 四、数据库设计…

机器学习:主成分分析笔记

主成分分析&#xff08;Principal Component Analysis&#xff0c;PCA&#xff09;是一种无监督的机器学习算法&#xff0c;通常用于高维数据的降维、提取主要特征、数据降噪和可视化。PCA的基本思想是将原始数据的多个变量转换为少数几个相互独立的变量&#xff08;即主成分&a…

上海亚商投顾:深成指震荡涨超1% 两市成交连续破万亿

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指3月1日震荡反弹&#xff0c;深成指、创业板指午后涨超1%。充电桩概念股集体走强&#xff0c;英可瑞、欧陆…

Stable Video文本生成视频公测地址——Scaling Latent Video Diffusion Models to Large Datasets

近期&#xff0c;Stability AI发布了首个开放视频模型——"Stable Video"&#xff0c;该创新工具能够将文本和图像输入转化为生动的场景&#xff0c;将概念转换成动态影像&#xff0c;生成出电影级别的作品&#xff0c;旨在满足广泛的视频应用需求&#xff0c;包括媒…

leetcode10正则表达式匹配

leetcode10正则表达式匹配 思路python 思路 难点1 如何理解特殊字符 ’ * ’ 的作用&#xff1f; 如何正确的利用特殊字符 ’ . ’ 和 ’ * ’ &#xff1f; * 匹配零个或多个前面的那一个元素 "a*" 可表示的字符为不同数目的 a&#xff0c;包括&#xff1a; "…

二维码门楼牌管理系统技术服务:制作详解

文章目录 前言一、二维码门楼牌制作技术要求二、二维码门楼牌管理系统的优势与应用 前言 随着信息化时代的到来&#xff0c;二维码技术已广泛应用于各个领域。在城市管理中&#xff0c;二维码门楼牌管理系统的应用为城市管理带来了极大的便利。本文将详细探讨二维码门楼牌管理…

绝地求生:【2024PGC之路——PUBG电竞积分分布】

亲爱的PUBG电竞爱好者&#xff0c; 你们好&#xff01; 2024年PUBG电竞即将开始&#xff0c;让我们一起深入了解下今年令人激动的PGS 和 PGC赛事积分分配情况。 PUBG GLOBAL SERIES&#xff08;PGS全球系列赛&#xff09;: 积分分布 根据我们之前概述的《PUBG 2024电竞计划》…

camunda7数据库schame和表结构介绍

本文基于Camunda7.19.0版本&#xff0c;介绍Camunda开源工作流引擎的数据库架构和ER模型&#xff0c;Camunda7.19.0共49张表&#xff0c;包括了BPMN流程引擎、DMN规则引擎、CMMN引擎、历史数据、用户身份等方面的表结构定义&#xff0c;以及表与表之间的关联关系。 1、camunda…

SQL优化——插入数据、主键优化、order by 优化、group by 优化、limit 优化、count优化、update优化、

目录 1、SQL优化1——插入数据&#xff08;Insert&#xff09; 1.1、普通插入&#xff1a; 1.1.1、采用批量插入&#xff08;一次插入的数据不建议超过1000条&#xff09; 1.1.2、手动提交事务 1.1.3、主键顺序插入 1.2、大批量插入 1.2.1、在客户端连接服务器的时候&am…

Python——桌面摄像头软件(附源码+打包)

目录 一、前言 二、桌面摄像头软件 2.1、下载项目 2.2、功能介绍 三、打包工具&#xff08;nuitka&#xff09; 四、项目文件复制&#xff08;我全部合到一个文件里面了&#xff09; 五、结语 一、前言 看见b站的向军大叔用electron制作了一个桌面摄像头软件 但是&#x…

【离散化】【 树状树状 】100246 将元素分配到两个数组中

本文涉及知识点 离散化 树状树状 LeetCode 100246 将元素分配到两个数组中 给你一个下标从 1 开始、长度为 n 的整数数组 nums 。 现定义函数 greaterCount &#xff0c;使得 greaterCount(arr, val) 返回数组 arr 中 严格大于 val 的元素数量。 你需要使用 n 次操作&#x…

Network LSA 结构简述

Network LSA主要用于描述一个区域内的网络拓扑结构&#xff0c;包括网络中的路由器和连接到这些路由器的网络。它记录了每个路由器的邻居关系、连接状态以及连接的度量值&#xff08;如带宽、延迟等&#xff09;&#xff0c;以便计算最短路径和构建路由表。display ospf lsdb n…

CentOS下安装Kafka3

kafka是分布式消息队列&#xff0c;本文讲述其在centos&#xff08;centos 7.5&#xff09;下的安装。安装过程可以参考其官方文档https://kafka.apache.org/36/documentation.html 首先在官网 https://kafka.apache.org/downloads 下载Kafka二进制文件&#xff08;官网的压缩包…

WordPress免费的远程图片本地化下载插件nicen-localize-image

nicen-localize-image&#xff08;可在wordpress插件市场搜索下载&#xff09;&#xff0c;是一款用于本地化文章外部图片的插件&#xff0c;支持如下功能&#xff1a; 文章发布前通过编辑器插件本地化 文章手动发布时自动本地化 文章定时发布时自动本地化 针对已发布的文章…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于条件风险价值的虚拟电厂参与能量及备用市场的双层随机优化》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 这篇文章的标题涉及到以下几个关键点…

数字革命的浪潮:Web3如何改变一切

随着数字技术的不断发展&#xff0c;人类社会正迎来一场前所未有的数字革命浪潮。在这个浪潮中&#xff0c;Web3技术以其去中心化、安全、透明的特性&#xff0c;正在逐渐改变着我们的生活方式、商业模式以及社会结构。本文将深入探讨Web3技术如何改变一切&#xff0c;以及其所…

【学习心得】请求参数加密的原理与逆向思路

一、什么是请求参数加密&#xff1f; 请求参数加密是JS逆向反爬手段中的一种。它是指客户端&#xff08;浏览器&#xff09;执行JS代码&#xff0c;生成相应的加密参数。并带着加密后的参数请求服务器&#xff0c;得到正常的数据。 常见的被加密的请求参数sign 它的原理和过程图…

【C语言】【洛谷】P1125笨小猴

一、个人解答 #include<stdio.h> #include<string.h>int prime(int num);int main() {char max a, min z;int maxn0, minn1000;char str[100];int num[26] { 0 };fgets(str, sizeof(str), stdin);str[strcspn(str, "\n")] \0;for (int i 0; str[i]…

ABAP - SALV 教程15 用户点击按钮交互功能

SALV增加了按钮&#xff0c;那么该怎么实现点击了按钮实现交互功能呢&#xff1f;可以通过注册事件并且在对应的method中写入相关逻辑&#xff0c;来实现点击按钮后的逻辑。通过自定义状态栏的方式添加按钮&#xff1a;http://t.csdnimg.cn/lMF16通过使用派生类的方式添加按钮&…

【MetaGPT】配置教程

MetaGPT配置教程&#xff08;使用智谱AI的GLM-4&#xff09; 文章目录 MetaGPT配置教程&#xff08;使用智谱AI的GLM-4&#xff09;零、为什么要学MetaGPT一、配置环境二、克隆代码仓库三、设置智谱AI配置四、 示例demo&#xff08;狼羊对决&#xff09;五、参考链接 零、为什么…