【离散化】【 树状树状 】100246 将元素分配到两个数组中

本文涉及知识点

离散化 树状树状

LeetCode 100246 将元素分配到两个数组中

给你一个下标从 1 开始、长度为 n 的整数数组 nums 。
现定义函数 greaterCount ,使得 greaterCount(arr, val) 返回数组 arr 中 严格大于 val 的元素数量。
你需要使用 n 次操作,将 nums 的所有元素分配到两个数组 arr1 和 arr2 中。在第一次操作中,将 nums[1] 追加到 arr1 。在第二次操作中,将 nums[2] 追加到 arr2 。之后,在第 i 次操作中:

如果 greaterCount(arr1, nums[i]) > greaterCount(arr2, nums[i]) ,将 nums[i] 追加到 arr1 。
如果 greaterCount(arr1, nums[i]) < greaterCount(arr2, nums[i]) ,将 nums[i] 追加到 arr2 。
如果 greaterCount(arr1, nums[i]) == greaterCount(arr2, nums[i]) ,将 nums[i] 追加到元素数量较少的数组中。
如果仍然相等,那么将 nums[i] 追加到 arr1 。
连接数组 arr1 和 arr2 形成数组 result 。例如,如果 arr1 == [1,2,3] 且 arr2 == [4,5,6] ,那么 result = [1,2,3,4,5,6] 。
返回整数数组 result 。
示例 1:
输入:nums = [2,1,3,3]
输出:[2,3,1,3]
解释:在前两次操作后,arr1 = [2] ,arr2 = [1] 。
在第 3 次操作中,两个数组中大于 3 的元素数量都是零,并且长度相等,因此,将 nums[3] 追加到 arr1 。
在第 4 次操作中,两个数组中大于 3 的元素数量都是零,但 arr2 的长度较小,因此,将 nums[4] 追加到 arr2 。
在 4 次操作后,arr1 = [2,3] ,arr2 = [1,3] 。
因此,连接形成的数组 result 是 [2,3,1,3] 。
示例 2:
输入:nums = [5,14,3,1,2]
输出:[5,3,1,2,14]
解释:在前两次操作后,arr1 = [5] ,arr2 = [14] 。
在第 3 次操作中,两个数组中大于 3 的元素数量都是一,并且长度相等,因此,将 nums[3] 追加到 arr1 。
在第 4 次操作中,arr1 中大于 1 的元素数量大于 arr2 中的数量(2 > 1),因此,将 nums[4] 追加到 arr1 。
在第 5 次操作中,arr1 中大于 2 的元素数量大于 arr2 中的数量(2 > 1),因此,将 nums[5] 追加到 arr1 。
在 5 次操作后,arr1 = [5,3,1,2] ,arr2 = [14] 。
因此,连接形成的数组 result 是 [5,3,1,2,14] 。
示例 3:
输入:nums = [3,3,3,3]
输出:[3,3,3,3]
解释:在 4 次操作后,arr1 = [3,3] ,arr2 = [3,3] 。
因此,连接形成的数组 result 是 [3,3,3,3] 。
提示:
3 <= n <= 105
1 <= nums[i] <= 109

预备知识

本题的数据最大109,如果不离散化,空间复杂度会超。
离散化:不改变各数值相对大小的前提下,尽可能得减小各数值。
比如:{3,7,7,8} 变成{1,2,2,3}。
树状数组,可以在O(logn)时间更新数值和求和。

代码

template<class ELE = int >
class CTreeArr
{
public:
	CTreeArr(int iSize) :m_vData(iSize + 1)
	{

	}
	void Add(int index, ELE value)
	{
		index++;
		while (index < m_vData.size())
		{
			m_vData[index] += value;
			index += index & (-index);
		}
	}
	ELE Sum(int index)
	{
		index++;
		ELE ret = 0;
		while (index)
		{
			ret += m_vData[index];
			index -= index & (-index);
		}
		return ret;
	}
	ELE Get(int index)
	{
		return Sum(index) - Sum(index - 1);
	}
private:
	vector<ELE> m_vData;
};

class CTreeArrHlp
{
public:
	CTreeArrHlp(vector<int> nums)
	{
		sort(nums.begin(), nums.end());
		nums.erase(std::unique(nums.begin(), nums.end()), nums.end());
		for (int i = 0; i < nums.size(); i++)
		{
			mValueToIndex[nums[i]] = i;
		}
		m_pTreeArr = new CTreeArr<int>(nums.size());
	}
	void Add(const int& val)
	{
		m_nums.emplace_back(val);
		m_pTreeArr->Add(mValueToIndex[val], 1);
	}
	int MoreCnt(const int& val)
	{
		return m_nums.size() - m_pTreeArr->Sum(mValueToIndex[val]);
	}
	vector<int> m_nums;
protected:
	CTreeArr<int>* m_pTreeArr;
	unordered_map<int, int> mValueToIndex;
	
};
class Solution {
public:
	vector<int> resultArray(vector<int>& nums) {
		CTreeArrHlp hlp1(nums), hlp2(nums);
		hlp1.Add(nums[0]);
		hlp2.Add(nums[1]);		
		for (int i = 2; i < nums.size(); i++)
		{
			const int i1 = hlp1.MoreCnt(nums[i]);
			const int i2 = hlp2.MoreCnt(nums[i]);
			if (i1 > i2)
			{
				hlp1.Add(nums[i]);
			}
			else if (i1 < i2)
			{
				hlp2.Add(nums[i]);
			}
			else
			{
				if (hlp1.m_nums.size() <= hlp2.m_nums.size())
				{
					hlp1.Add(nums[i]);
				}
				else
				{
					hlp2.Add(nums[i]);
				}
			}
		}
		hlp1.m_nums.insert(hlp1.m_nums.end(), hlp2.m_nums.begin(), hlp2.m_nums.end());
		return hlp1.m_nums;
	}
};

使用封装的离散类

template
class CTreeArr
{
public:
CTreeArr(int iSize) :m_vData(iSize + 1)
{

}
void Add(int index, ELE value)
{
	index++;
	while (index < m_vData.size())
	{
		m_vData[index] += value;
		index += index & (-index);
	}
}
ELE Sum(int index)
{
	index++;
	ELE ret = 0;
	while (index)
	{
		ret += m_vData[index];
		index -= index & (-index);
	}
	return ret;
}
ELE Get(int index)
{
	return Sum(index) - Sum(index - 1);
}

private:
vector m_vData;
};

class CDiscretize //离散化
{
public:
CDiscretize(vector nums)
{
sort(nums.begin(), nums.end());
nums.erase(std::unique(nums.begin(), nums.end()), nums.end());
for (int i = 0; i < nums.size(); i++)
{
m_mValueToIndex[nums[i]] = i;
}
}
int operator[](const int value)const
{
auto it = m_mValueToIndex.find(value);
if (m_mValueToIndex.end() == it)
{
return -1;
}
return it->second;
}
int size()const
{
return m_mValueToIndex.size();
}
protected:
unordered_map<int, int> m_mValueToIndex;
};
class CTreeArrHlp
{
public:
CTreeArrHlp(vector nums):m_dis(nums),m_treeArr(m_dis.size())
{
}
void Add(const int& val)
{
m_nums.emplace_back(val);
m_treeArr.Add(m_dis[val], 1);
}
int MoreCnt(const int& val)
{
return m_nums.size() - m_treeArr.Sum(m_dis[val]);
}
vector m_nums;
protected:
CDiscretize m_dis;
CTreeArr m_treeArr;

};
class Solution {
public:
vector resultArray(vector& nums) {
CTreeArrHlp hlp1(nums), hlp2(nums);
hlp1.Add(nums[0]);
hlp2.Add(nums[1]);
for (int i = 2; i < nums.size(); i++)
{
const int i1 = hlp1.MoreCnt(nums[i]);
const int i2 = hlp2.MoreCnt(nums[i]);
if (i1 > i2)
{
hlp1.Add(nums[i]);
}
else if (i1 < i2)
{
hlp2.Add(nums[i]);
}
else
{
if (hlp1.m_nums.size() <= hlp2.m_nums.size())
{
hlp1.Add(nums[i]);
}
else
{
hlp2.Add(nums[i]);
}
}
}
hlp1.m_nums.insert(hlp1.m_nums.end(), hlp2.m_nums.begin(), hlp2.m_nums.end());
return hlp1.m_nums;
}
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<int> nums = { 11,92,25,90 };
	{
		Solution sln;
		;
		auto res = sln.resultArray(nums);
		Assert({ 11,92,25,90 }, res);
	}
	
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/426747.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Network LSA 结构简述

Network LSA主要用于描述一个区域内的网络拓扑结构&#xff0c;包括网络中的路由器和连接到这些路由器的网络。它记录了每个路由器的邻居关系、连接状态以及连接的度量值&#xff08;如带宽、延迟等&#xff09;&#xff0c;以便计算最短路径和构建路由表。display ospf lsdb n…

CentOS下安装Kafka3

kafka是分布式消息队列&#xff0c;本文讲述其在centos&#xff08;centos 7.5&#xff09;下的安装。安装过程可以参考其官方文档https://kafka.apache.org/36/documentation.html 首先在官网 https://kafka.apache.org/downloads 下载Kafka二进制文件&#xff08;官网的压缩包…

WordPress免费的远程图片本地化下载插件nicen-localize-image

nicen-localize-image&#xff08;可在wordpress插件市场搜索下载&#xff09;&#xff0c;是一款用于本地化文章外部图片的插件&#xff0c;支持如下功能&#xff1a; 文章发布前通过编辑器插件本地化 文章手动发布时自动本地化 文章定时发布时自动本地化 针对已发布的文章…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于条件风险价值的虚拟电厂参与能量及备用市场的双层随机优化》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 这篇文章的标题涉及到以下几个关键点…

数字革命的浪潮:Web3如何改变一切

随着数字技术的不断发展&#xff0c;人类社会正迎来一场前所未有的数字革命浪潮。在这个浪潮中&#xff0c;Web3技术以其去中心化、安全、透明的特性&#xff0c;正在逐渐改变着我们的生活方式、商业模式以及社会结构。本文将深入探讨Web3技术如何改变一切&#xff0c;以及其所…

【学习心得】请求参数加密的原理与逆向思路

一、什么是请求参数加密&#xff1f; 请求参数加密是JS逆向反爬手段中的一种。它是指客户端&#xff08;浏览器&#xff09;执行JS代码&#xff0c;生成相应的加密参数。并带着加密后的参数请求服务器&#xff0c;得到正常的数据。 常见的被加密的请求参数sign 它的原理和过程图…

【C语言】【洛谷】P1125笨小猴

一、个人解答 #include<stdio.h> #include<string.h>int prime(int num);int main() {char max a, min z;int maxn0, minn1000;char str[100];int num[26] { 0 };fgets(str, sizeof(str), stdin);str[strcspn(str, "\n")] \0;for (int i 0; str[i]…

ABAP - SALV 教程15 用户点击按钮交互功能

SALV增加了按钮&#xff0c;那么该怎么实现点击了按钮实现交互功能呢&#xff1f;可以通过注册事件并且在对应的method中写入相关逻辑&#xff0c;来实现点击按钮后的逻辑。通过自定义状态栏的方式添加按钮&#xff1a;http://t.csdnimg.cn/lMF16通过使用派生类的方式添加按钮&…

【MetaGPT】配置教程

MetaGPT配置教程&#xff08;使用智谱AI的GLM-4&#xff09; 文章目录 MetaGPT配置教程&#xff08;使用智谱AI的GLM-4&#xff09;零、为什么要学MetaGPT一、配置环境二、克隆代码仓库三、设置智谱AI配置四、 示例demo&#xff08;狼羊对决&#xff09;五、参考链接 零、为什么…

java学习(常用类)

一、包装类&#xff08;针对八种基本数据类型相应的引用类型--包装类. 1)包装类和基本数据类型的相互转换 装箱&#xff1a;基本类型->包装类型 拆箱&#xff1a;包装类型->基本类型 //以下是int类型和char类型演示。 public class temp1 {public static void main(St…

【Web - 框架 - Vue】随笔 - 通过CDN的方式使用VUE 2.0和Element UI

通过CDN的方式使用VUE 2.0和Element UI - 快速上手 VUE 网址 https://cdn.bootcdn.net/ajax/libs/vue/2.7.16/vue.js源码 https://download.csdn.net/download/HIGK_365/88815507测试 代码 <!DOCTYPE html> <html lang"en"> <head><meta …

C语言基础(五)——结构体与C++引用

七、结构体与C引用 7.1 结构体的定义、初始化、结构体数组 C 语言提供结构体来管理不同类型的数据组合。通过将不同类型的数据组合成一个整体&#xff0c;方便引用 例如&#xff0c;一名学生有学号、姓 名、性别、年龄、地址等属性&#xff0c;如果针对学生的学号、姓名、年龄…

VMware 虚拟机安装windows 10操作系统

先提前准备好镜像文件 1.创建新的虚拟机 2.选择自定义&#xff0c;然后下一步 v Windows 建议选择2G以上&#xff0c;下一步 选择网络地址转换&#xff08;NAT&#xff09;&#xff0c;下一步 这里可按自己的需求来分区&#xff0c;也可以安装好后再分区 选择立即重启&#xff…

【计算机毕业设计】208基于SSM的在线教育网站

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

Redis高并发高可用详解

Redis高并发高可用 复制 在分布式系统中为了解决单点问题&#xff0c;通常会把数据复制多个副本部署到其他机器&#xff0c;满足故障恢复和负载均衡等需求。Redis也是如此&#xff0c;它为我们提供了复制功能&#xff0c;实现了相同数据的多个Redis 副本。复制功能是高可用Re…

Effective objective-c-- 内存管理

Effective objective-c-- 内存管理 前言理解引用计数引用计数工作原理属性存取方法中的内存管理自动释放池保留环要点 以ARC简化引用计数使用ARC时必须遵循的方法和命名规则变量的内存管理语义ARC如何清理实例变量覆写内存管理方法要点 在dealloc方法中只释放引用并解除监听要点…

【数据分享】2000~2022年中国区域MOD16A2GF V061 潜在蒸散发PET数据

各位同学们好&#xff0c;今天和大伙儿分享的是2000~2022年中国区域MOD16A2GF V061 潜在蒸散发PET数据。如果大家有下载处理数据等方面的问题&#xff0c;您可以私信或者评论。 Running, S., Mu, Q., Zhao, M., Moreno, A. (2021). MODIS/Terra Net Evapotranspiration Gap-Fil…

[JavaWeb玩耍日记]HTML+CSS+JS快速使用

目录 一.标签 二.指定css 三.css选择器 四.超链接 五.视频与排版 六.布局测试 七.布局居中 八.表格 九.表单 十.表单项 十一.JS引入与输出 十二.JS变量&#xff0c;循环&#xff0c;函数 十三.Array与字符串方法 十四.自定义对象与JSON 十五.BOM对象 十六.获取…

模型部署 - onnx 的导出和分析 -(1) - PyTorch 导出 ONNX - 学习记录

onnx 的导出和分析 一、PyTorch 导出 ONNX 的方法1.1、一个简单的例子 -- 将线性模型转成 onnx1.2、导出多个输出头的模型1.3、导出含有动态维度的模型 二、pytorch 导出 onnx 不成功的时候如何解决2.1、修改 opset 的版本2.2、替换 pytorch 中的算子组合2.3、在 pytorch 登记&…

deep learning with pytorch(一)

1.create a basic nerual network model with pytorch 数据集 Iris UCI Machine Learning Repository fully connected 目标:创建从输入层的代码开始&#xff0c;向前移动到隐藏层&#xff0c;最后到输出层 # %% import torch import torch.nn as nn import torch.nn.funct…