Redis高并发高可用详解

Redis高并发高可用

复制

在分布式系统中为了解决单点问题,通常会把数据复制多个副本部署到其他机器,满足故障恢复和负载均衡等需求。Redis也是如此,它为我们提供了复制功能,实现了相同数据的多个Redis 副本。复制功能是高可用Redis的基础,后面章节的哨兵和集群都是在复制的基础上实现高可用的。

默认情况下,Redis都是主节点。每个从节点只能有一个主节点,而主节点可以同时具有多个从节点。复制的数据流是单向的,只能由主节点复制到从节点。

复制的拓扑结构

Redis 的复制拓扑结构可以支持单层或多层复制关系,根据拓扑复杂性可以分为以下三种:一主一从、一主多从、树状主从结构,下面分别介绍。

一主一从结构

一主一从结构是最简单的复制拓扑结构,用于主节点出现宕机时从节点提供故障转移支持。

image.png

当应用写命令并发量较高且需要持久化时,可以只在从节点上开启AOF ,这样既保证数据安全性同时也避免了持久化对主节点的性能干扰。但需要注意的是,当主节点关闭持久化功能时,如果主节点脱机要避免自动重启操作。

因为主节点之前没有开启持久化功能自动重启后数据集为空,这时从节点如果继续复制主节点会导致从节点数据也被清空的情况,丧失了持久化的意义。安全的做法是在从节点上执行slaveof no one断开与主节点的复制关系,再重启主节点从而避免这一问题。

一主多从结构

一主多从结构(又称为星形拓扑结构)使得应用端可以利用多个从节点实现读写分离。

image.png

对于读占比较大的场景,可以把读命令发送到从节点来分担主节点压力。同时在日常开发中如果需要执行一些比较耗时的读命令,如:keys、sort等,可以在其中一台从节点上执行,防止慢查询对主节点造成阻塞从而影响线上服务的稳定性。对于写并发量较高的场景,多个从节点会导致主节点写命令的多次发送从而过度消耗网络带宽,同时也加重了主节点的负载影响服务稳定性。

树状主从结构

树状主从结构(又称为树状拓扑结构)使得从节点不但可以复制主节点数据,同时可以作为其他从节点的主节点继续向下层复制。通过引入复制中间层,可以有效降低主节点负载和需要传送给从节点的数据量。

image.png

数据写入节点A后会同步到B和C节点,B节点再把数据同步到D和E节点,数据实现了一层一层的向下复制。当主节点需要挂载多个从节点时为了避免对主节点的性能干扰,可以采用树状主从结构降低主节点压力。

复制的配置

建立复制

参与复制的Redis实例划分为主节点(master)和从节点(slave)。默认情况下,Redis都是主节点。每个从节点只能有一个主节点,而主节点可以同时具有多个从节点。复制的数据流是单向的,只能由主节点复制到从节点。

配置复制的方式有以下三种

1)在配置文件中加入slaveof{masterHost } {masterPort}随 Redis启动生效。

2)在redis-server启动命令后加入–slaveof{masterHost} {masterPort }生效。

3)直接使用命令:slaveof {masterHost} { masterPort}生效。

综上所述,slaveof命令在使用时,可以运行期动态配置,也可以提前写到配置文件中。

比如:我在机器上启动2台Redis, 分别是6379 和6380 两个端口。

image.png

image.png

slaveof本身是异步命令,执行slaveof命令时,节点只保存主节点信息后返回,后续复制流程在节点内部异步执行,具体细节见之后。主从节点复制成功建立后,可以使用info replication命令查看复制相关状态。

断开复制

slaveof命令不但可以建立复制,还可以在从节点执行slaveof no one来断开与主节点复制关系。例如在6881节点上执行slaveof no one来断开复制。

image.png

slaveof本身是异步命令,执行slaveof命令时,节点只保存主节点信息后返回,后续复制流程在节点内部异步执行,具体细节见之后。主从节点复制成功建立后,可以使用info replication命令查看复制相关状态。

断开复制主要流程:

1)断开与主节点复制关系。2)从节点晋升为主节点。

从节点断开复制后并不会抛弃原有数据,只是无法再获取主节点上的数据变化。

通过slaveof命令还可以实现切主操作,所谓切主是指把当前从节点对主节点的复制切换到另一个主节点。

执行slaveof{ newMasterIp} { newMasterPort}命令即可,例如把6881节点从原来的复制6880节点变为复制6879节点。

image.png

切主内部流程如下:

1)断开与旧主节点复制关系。

2)与新主节点建立复制关系。

3)删除从节点当前所有数据。

4)对新主节点进行复制操作。

只读

默认情况下,从节点使用slave-read-only=yes配置为只读模式。由于复制只能从主节点到从节点,对于从节点的任何修改主节点都无法感知,修改从节点会造成主从数据不一致。因此建议线上不要修改从节点的只读模式。

image.png

image.png

image.png

传输延迟

主从节点一般部署在不同机器上,复制时的网络延迟就成为需要考虑的问题,Redis为我们提供了repl-disable-tcp-nodelay参数用于控制是否关闭TCP_NODELAY,默认关闭,说明如下:

image.png

当关闭时,主节点产生的命令数据无论大小都会及时地发送给从节点,这样主从之间延迟会变小,但增加了网络带宽的消耗。适用于主从之间的网络环境良好的场景,如同机架或同机房部署。

当开启时,主节点会合并较小的TCP数据包从而节省带宽。默认发送时间间隔取决于Linux的内核,一般默认为40毫秒。这种配置节省了带宽但增大主从之间的延迟。适用于主从网络环境复杂或带宽紧张的场景,如跨机房部署。

Redis主从复制原理

image.png

在从节点执行slaveof命令后,复制过程便开始运作。

1)保存主节点信息

执行slaveof后从节点只保存主节点的地址信息便直接返回,这时建立复制流程还没有开始。

2)建立主从socket连接

从节点(slave)内部通过每秒运行的定时任务维护复制相关逻辑,当定时任务发现存在新的主节点后,会尝试与该节点建立网络连接。

从节点会建立一个socket套接字,专门用于接受主节点发送的复制命令。从节点连接成功后打印日志。

如果从节点无法建立连接,定时任务会无限重试直到连接成功或者执行slaveof no one取消复制。

image.png

3)发送ping命令

连接建立成功后从节点发送ping请求进行首次通信,ping请求主要目的:检测主从之间网络套接字是否可用、检测主节点当前是否可接受处理命令。

image.png

从节点发送的ping命令成功返回,Redis打印日志,并继续后续复制流程:

4)权限验证

如果主节点设置了requirepass参数,则需要密码验证,从节点必须配置masterauth参数保证与主节点相同的密码才能通过验证;如果验证失败复制将终止,从节点重新发起复制流程。

image.png

5) 同步数据集

主从复制连接正常通信后,对于首次建立复制的场景,主节点会把持有的数据全部发送给从节点,这部分操作是耗时最长的步骤。Redis在2.8版本以后采用新复制命令 psync进行数据同步,原来的sync命令依然支持,保证新旧版本的兼容性。新版同步划分两种情况:全量同步和部分同步。

6) 命令持续复制

当主节点把当前的数据同步给从节点后,便完成了复制的建立流程。接下来主节点会持续地把写命令发送给从节点,保证主从数据一致性。

Redis数据同步

Redis早期支持的复制功能只有全量复制(sync命令),它会把主节点全部数据一次性发送给从节点,当数据量较大时,会对主从节点和网络造成很大的开销。

Redis在2.8版本以后采用新复制命令psync进行数据同步,原来的sync命令依然支持,保证新旧版本的兼容性。新版同步划分两种情况:全量复制和部分复制。

全量同步

全量复制:一般用于初次复制场景,Redis早期支持的复制功能只有全量复制,它会把主节点全部数据一次性发送给从节点,当数据量较大时,会对主从节点和网络造成很大的开销。

全量复制是Redis最早支持的复制方式,也是主从第一次建立复制时必须经历的阶段。触发全量复制的命令是sync和psync。

psync全量复制流程,它与2.8以前的sync全量复制机制基本一致。

流程说明

image.png

1)发送psync命令进行数据同步,由于是第一次进行复制,从节点没有复制偏移量和主节点的运行ID,所以发送psync ? -1。

2)主节点根据psync ? -1解析出当前为全量复制,回复 +FULLRESYNC响应,从节点接收主节点的响应数据保存运行ID和偏移量offset,并打印日志。

3)主节点执行bgsave保存RDB 文件到本地。

4)主节点发送RDB文件给从节点,从节点把接收的RDB文件保存在本地并直接作为从节点的数据文件,接收完RDB后从节点打印相关日志,可以在日志中查看主节点发送的数据量。

image.png

5)对于从节点开始接收RDB快照到接收完成期间,主节点仍然响应读写命令,因此主节点会把这期间写命令数据保存在复制客户端缓冲区内,当从节点加载完RDB文件后,主节点再把缓冲区内的数据发送给从节点,保证主从之间数据一致性。

image.png

需要注意,对于数据量较大的主节点,比如生成的RDB文件超过6GB 以上时要格外小心。传输文件这一步操作非常耗时,速度取决于主从节点之间网络带宽

问题

通过分析全量复制的所有流程,会发现全量复制是一个非常耗时费力的操作。它的时间开销主要包括:

1、主节点bgsave时间。

2、RDB文件网络传输时间。

3、从节点清空数据时间。

4、从节点加载RDB的时间。

5、可能的AOF重写时间。

因此当数据量达到一定规模之后,由于全量复制过程中将进行多次持久化相关操作和网络数据传输,这期间会大量消耗主从节点所在服务器的CPU、内存和网络资源。

另外最大的问题,复制还会失败!!!

例如我们线上数据量在6G左右的主节点,从节点发起全量复制的总耗时在2分钟左右。

1、如果总时间超过repl-timeout所配置的值(默认60秒),从节点将放弃接受RDB文件并清理已经下载的临时文件,导致全量复制失败。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2、如果主节点创建和传输RDB的时间过长,对于高流量写入场景非常容易造成主节点复制客户端缓冲区溢出。默认配置为

image.png

意思是如果60秒内缓冲区消耗持续大于64MB或者直接超过256MB时,主节点将直接关闭复制客户端连接,造成全量同步失败。

所以除了第一次复制时采用全量复制在所难免之外,对于其他场景应该规避全量复制的发生。正因为全量复制的成本问题。

部分同步

部分复制主要是Redis针对全量复制的过高开销做出的一种优化措施。

使用psync {runId} {offset} 命令实现

当从节点(slave)正在复制主节点(master)时,如果出现网络闪断或者命令丢失等异常情况时,从节点会向主节点要求补发丢失的命令数据,如果主节点的复制积压缓冲区内存在这部分数据则直接发送给从节点,这样就可以保持主从节点复制的一致性。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

流程说明

1)当主从节点之间网络出现中断时,如果超过repl-timeout时间,主节点会认为从节点故障并中断复制连接,打印日志。如果此时从节点没有宕机,也会打印与主节点连接丢失日志。

2)主从连接中断期间主节点依然响应命令,但因复制连接中断命令无法发送给从节点,不过主节点内部存在的复制积压缓冲区,依然可以保存最近一段时间的写命令数据,默认最大缓存1MB。

3)当主从节点网络恢复后,从节点会再次连上主节点,打印日志。

4)当主从连接恢复后,由于从节点之前保存了自身已复制的偏移量和主节点的运行ID。因此会把它们当作psync参数发送给主节点,要求进行部分复制操作。

5)主节点接到psync命令后首先核对参数runId是否与自身一致,如果一致,说明之前复制的是当前主节点;之后根据参数offset在自身复制积压缓冲区查找,如果偏移量之后的数据存在缓冲区中,则对从节点发送+CONTINUE响应,表示可以进行部分复制。如果不再,则退化为全量复制。

6)主节点根据偏移量把复制积压缓冲区里的数据发送给从节点,保证主从复制进入正常状态。发送的数据量可以在主节点的日志,传递的数据远远小于全量数据。

心跳

主从节点在建立复制后,它们之间维护着长连接并彼此发送心跳命令。

主从心跳判断机制:

1)主从节点彼此都有心跳检测机制,各自模拟成对方的客户端进行通信,通过client list命令查看复制相关客户端信息,主节点的连接状态为flags=M,从节点连接状态为flags=S。

2)主节点默认每隔10秒对从节点发送ping命令,判断从节点的存活性和连接状态。

可通过参数repl-ping-slave-period控制发送频率。

3)从节点在主线程中每隔1秒发送replconf ack {offset}命令,给主节点上报自身当前的复制偏移量。replconf命令主要作用如下:

实时监测主从节点网络状态;

上报自身复制偏移量,检查复制数据是否丢失,如果从节点数据丢失,再从主节点的复制缓冲区中拉取丢失数据

实现保证从节点的数量和延迟性功能,通过min-slaves-to-write、min-slaves-max-lag参数配置定义;

主节点根据replconf命令判断从节点超时时间,体现在info replication统计中的lag信息中,lag表示与从节点最后一次通信延迟的秒数,正常延迟应该在0和1之间。如果超过repl-timeout配置的值((默认60秒),则判定从节点下线并断开复制客户端连接。即使主节点判定从节点下线后,如果从节点重新恢复,心跳检测会继续进行。

异步复制机制

主节点不但负责数据读写,还负责把写命令同步给从节点。写命令的发送过程是异步完成,也就是说主节点自身处理完写命令后直接返回给客户端,并不等待从节点复制完成。

由于主从复制过程是异步的,就会造成从节点的数据相对主节点存在延迟。具体延迟多少字节,我们可以在主节点执行info replication命令查看相关指标获得。

在统计信息中可以看到从节点slave信息,分别记录了从节点的ip和 port,从节点的状态,offset表示当前从节点的复制偏移量,master_repl_offset表示当前主节点的复制偏移量,两者的差值就是当前从节点复制延迟量。Redis 的复制速度取决于主从之间网络环境,repl-disable-tcp-nodelay,命令处理速度等。正常情况下,延迟在1秒以内。

哨兵Redis Sentinel

Redis 的主从复制模式下,一旦主节点由于故障不能提供服务,需要人工将从节点晋升为主节点,同时还要通知应用方更新主节点地址,对于很多应用场景这种故障处理的方式是无法接受的。

Redis 从 2.8开始正式提供了Redis Sentinel(哨兵)架构来解决这个问题。

主从复制的问题

Redis 的主从复制模式可以将主节点的数据改变同步给从节点,这样从节点就可以起到两个作用

第一,作为主节点的一个备份,一旦主节点出了故障不可达的情况,从节点可以作为后备“顶”上来,并且保证数据尽量不丢失(主从复制是最终一致性)。

第二,从节点可以扩展主节点的读能力,一旦主节点不能支撑住大并发量的读操作,从节点可以在一定程度上帮助主节点分担读压力。

但是主从复制也带来了以下问题:

1、一旦主节点出现故障,需要手动将一个从节点晋升为主节点,同时需要修改应用方的主节点地址,还需要命令其他从节点去复制新的主节点,整个过程都需要人工干预。

2、主节点的写能力受到单机的限制。

3、主节点的存储能力受到单机的限制。

Redis Sentinel

Redis Sentinel是一个分布式架构,其中包含若干个Sentinel节点和Redis数据节点,每个Sentinel节点会对数据节点和其余Sentinel节点进行监控,当它发现节点不可达时,会对节点做下线标识。如果被标识的是主节点,它还会和其他Sentinel节点进行“协商”,当大多数Sentinel节点都认为主节点不可达时,它们会选举出一个Sentinel节点来完成自动故障转移的工作,同时会将这个变化实时通知给Redis应用方。整个过程完全是自动的,不需要人工来介入,所以这套方案很有效地解决了Redis的高可用问题。

image.png

Redis Sentinel的搭建

我们以以3个 Sentinel节点、1个主节点、2个从节点组成一个Redis Sentinel进行说明。

启动主从的方式和普通的主从没有不同。

启动Sentinel节点

Sentinel节点的启动方法有两种:

方法一,使用redis-sentinel命令:

./redis-sentinel   ../conf/reids.conf

方法二,使用redis-server命令加–sentinel参数:

./redis-server ../conf/reids.conf  --sentinel

两种方法本质上是—样的。

确认

Sentinel节点本质上是一个特殊的Redis节点,所以也可以通过info命令来查询它的相关信息

image.png

实现原理

Redis Sentinel的基本实现中包含以下:
Redis Sentinel 的定时任务、主观下线和客观下线、Sentinel领导者选举、故障转移等等知识点,学习这些可以让我们对Redis Sentinel的高可用特性有更加深入的理解和认识。

三个定时监控任务

一套合理的监控机制是Sentinel节点判定节点不可达的重要保证,Redis Sentinel通过三个定时监控任务完成对各个节点发现和监控:

1、每隔10秒的定时监控

image.png

每隔10秒,每个Sentinel节点会向主节点和从节点发送info命令获取最新的拓扑结构,Sentinel节点通过对上述结果进行解析就可以找到相应的从节点。

这个定时任务的作用具体可以表现在三个方面:

1、通过向主节点执行info命令,获取从节点的信息,这也是为什么Sentinel节点不需要显式配置监控从节点。

2、当有新的从节点加入时都可以立刻感知出来。

3、节点不可达或者故障转移后,可以通过info命令实时更新节点拓扑信息。

2、每隔2秒的定时监控

image.png

每隔2秒,每个Sentinel节点会向Redis数据节点的_sentinel_:hello频道上发送该Sentinel节点对于主节点的判断以及当前Sentinel节点的信息,同时每个Sentinel节点也会订阅该频道,来了解其他Sentinel节点以及它们对主节点的判断,所以这个定时任务可以完成以下两个工作:

发现新的Sentinel节点:通过订阅主节点的__sentinel__:hello了解其他的Sentinel节点信息,如果是新加入的Sentinel节点,将该Sentinel节点信息保存起来,并与该 Sentinel节点创建连接。

Sentinel节点之间交换主节点的状态,作为后面客观下线以及领导者选举的依据。

3、每隔1秒的定时监控

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

每隔1秒,每个Sentinel节点会向主节点、从节点、其余Sentinel节点发送一条ping命令做一次心跳检测,来确认这些节点当前是否可达。

通过上面的定时任务,Sentinel节点对主节点、从节点、其余Sentinel节点都建立起连接,实现了对每个节点的监控,这个定时任务是节点失败判定的重要依据。

image.png

主观下线和客观下线
主观下线

image.png

image.png

上一小节介绍的第三个定时任务,每个Sentinel节点会每隔1秒对主节点、从节点、其他Sentinel节点发送ping命令做心跳检测,当这些节点超过down-after-milliseconds没有进行有效回复,Sentinel节点就会对该节点做失败判定,这个行为叫做主观下线。从字面意思也可以很容易看出主观下线是当前Sentinel节点的一家之言,存在误判的可能。

客观下线

image.png

当Sentinel主观下线的节点是主节点时,该Sentinel节点会通过sentinel is-master-down-by-addr命令向其他Sentinel节点询问对主节点的判断,当超过<quorum>个数,Sentinel节点认为主节点确实有问题,这时该Sentinel节点会做出客观下线的决定,这样客观下线的含义是比较明显了,也就是大部分Sentinel节点都对主节点的下线做了同意的判定,那么这个判定就是客观的。

image.png

领导者Sentinel节点选举

image.png

假如Sentinel节点对于主节点已经做了客观下线,那么是不是就可以立即进行故障转移了?当然不是,实际上故障转移的工作只需要一个Sentinel节点来完成即可,所以 Sentinel节点之间会做一个领导者选举的工作,选出一个Sentinel节点作为领导者进行故障转移的工作。Redis使用了Raft算法实现领导者选举,Redis Sentinel进行领导者选举的大致思路如下:

1 )每个在线的Sentinel节点都有资格成为领导者,当它确认主节点主观下线时候,会向其他Sentinel节点发送sentinel is-master-down-by-addr命令,要求将自己设置为领导者。

2)收到命令的Sentinel节点,如果没有同意过其他Sentinel节点的sentinel is-master-down-by-addr命令,将同意该请求,否则拒绝。

3)如果该Sentinel节点发现自己的票数已经大于等于max (quorum,num(sentinels)/2+1),那么它将成为领导者。

4)如果此过程没有选举出领导者,将进入下一次选举。

选举的过程非常快,基本上谁先完成客观下线,谁就是领导者。

Raft协议的详细版本:

raft-zh_cn/raft-zh_cn.md at master · maemual/raft-zh_cn · GitHub

如果你想手写一个Raft协议,可以看下蚂蚁金服的开发生产的raft算法组件

GitHub - sofastack/sofa-jraft: A production-grade java implementation of RAFT consensus algorithm.

选举很快的!!

image.png

故障转移

领导者选举出的Sentinel节点负责故障转移,具体步骤如下:

image.png

1)在从节点列表中选出一个节点作为新的主节点,选择方法如下:

a)过滤:“不健康”(主观下线、断线)、5秒内没有回复过Sentinel节点 ping响应、与主节点失联超过down-after-milliseconds*10秒。
b)选择slave-priority(从节点优先级)最高的从节点列表,如果存在则返回,不存在则继续。
c)选择复制偏移量最大的从节点(复制的最完整),如果存在则返回,不存在则继续。
d)选择runid最小的从节点。

2 ) Sentinel领导者节点会对第一步选出来的从节点执行slaveof no one命令让其成为主节点。

3 ) Sentinel领导者节点会向剩余的从节点发送命令,让它们成为新主节点的从节点,复制规则和parallel-syncs参数有关。

4 ) Sentinel节点集合会将原来的主节点更新为从节点,并保持着对其关注,当其恢复后命令它去复制新的主节点。

Redis Sentinel的客户端

如果主节点挂掉了,虽然Redis Sentinel可以完成故障转移,但是客户端无法获取这个变化,那么使用Redis Sentinel的意义就不大了,所以各个语言的客户端需要对Redis Sentinel进行显式的支持。

Sentinel节点集合具备了监控、通知、自动故障转移、配置提供者若干功能,也就是说实际上最了解主节点信息的就是Sentinel节点集合,而各个主节点可以通过<host-name>进行标识的,所以,无论是哪种编程语言的客户端,如果需要正确地连接Redis Sentinel,必须有Sentinel节点集合和masterName两个参数。

我们依然使用Jedis 作为Redis 的 Java客户端,Jedis能够很好地支持Redis
Sentinel,并且使用Jedis连接Redis Sentinel也很简单,按照Redis Sentinel的原理,需要有masterName和Sentinel节点集合两个参数。Jedis针对Redis Sentinel给出了一个 JedisSentinelPool。

具体代码可以参见redis-sentinel:

image.png

实现一个Redis Sentinel客户端一般来说需要:

1)遍历Sentinel节点集合获取一个可用的Sentinel节点,Sentinel节点之间可以共享数据,所以从任意一个Sentinel节点获取主节点信息都是可以的。

2)通过sentinel get-master-addr-by-name host-name这个API来获取对应主节点的相关信息。

3)验证当前获取的“主节点”是真正的主节点,这样做的目的是为了防止故障转移期间主节点的变化。

4)保持和 Sentinel节点集合的“联系”,时刻获取关于主节点的相关“信息”。

但是注意,JedisSentinel的实现是不支持读写分离的,所有的连接都是连接到Master上面,Slave就完全当成Master的备份,存在着性能浪费。因此如果想支持读写分离,需要自行实现,这里给一个参考

基于Spring 的 Redis Sentinel 读写分离 Slave 连接池 (jack-yin.com)

高可用读写分离

从节点的作用

第一,当主节点出现故障时,作为主节点的后备“顶”上来实现故障转移,Redis Sentinel已经实现了该功能的自动化,实现了真正的高可用。

第二,扩展主节点的读能力,尤其是在读多写少的场景非常适用。

但上述模型中,从节点不是高可用的:

如果slave-1节点出现故障,首先客户端client-1将与其失联,其次Sentinel节点只会对该节点做主观下线,因为Redis Sentinel的故障转移是针对主节点的。所以很多时候,Redis Sentinel中的从节点仅仅是作为主节点一个热备,不让它参与客户端的读操作,就是为了保证整体高可用性,但实际上这种使用方法还是有一些浪费,尤其是在有很多从节点或者确实需要读写分离的场景,所以如何实现从节点的高可用是非常有必要的。

Redis Sentinel读写分离设计思路参考

Redis Sentinel在对各个节点的监控中,如果有对应事件的发生,都会发出相应的事件消息,其中和从节点变动的事件有以下几个:

+switch-master

切换主节点(原来的从节点晋升为主节点),说明减少了某个从节点。

+convert-to-slave
切换从节点(原来的主节点降级为从节点),说明添加了某个从节点。

+sdown

主观下线,说明可能某个从节点可能不可用(因为对从节点不会做客观下线),所以在实现客户端时可以采用自身策略来实现类似主观下线的功能。

+reboot

重新启动了某个节点,如果它的角色是slave,那么说明添加了某个从节点。

所以在设计Redis Sentinel的从节点高可用时,只要能够实时掌握所有从节点的状态,把所有从节点看做一个资源池,无论是上线还是下线从节点,客户端都能及时感知到(将其从资源池中添加或者删除),这样从节点的高可用目标就达到了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/426726.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Effective objective-c-- 内存管理

Effective objective-c-- 内存管理 前言理解引用计数引用计数工作原理属性存取方法中的内存管理自动释放池保留环要点 以ARC简化引用计数使用ARC时必须遵循的方法和命名规则变量的内存管理语义ARC如何清理实例变量覆写内存管理方法要点 在dealloc方法中只释放引用并解除监听要点…

【数据分享】2000~2022年中国区域MOD16A2GF V061 潜在蒸散发PET数据

各位同学们好&#xff0c;今天和大伙儿分享的是2000~2022年中国区域MOD16A2GF V061 潜在蒸散发PET数据。如果大家有下载处理数据等方面的问题&#xff0c;您可以私信或者评论。 Running, S., Mu, Q., Zhao, M., Moreno, A. (2021). MODIS/Terra Net Evapotranspiration Gap-Fil…

[JavaWeb玩耍日记]HTML+CSS+JS快速使用

目录 一.标签 二.指定css 三.css选择器 四.超链接 五.视频与排版 六.布局测试 七.布局居中 八.表格 九.表单 十.表单项 十一.JS引入与输出 十二.JS变量&#xff0c;循环&#xff0c;函数 十三.Array与字符串方法 十四.自定义对象与JSON 十五.BOM对象 十六.获取…

模型部署 - onnx 的导出和分析 -(1) - PyTorch 导出 ONNX - 学习记录

onnx 的导出和分析 一、PyTorch 导出 ONNX 的方法1.1、一个简单的例子 -- 将线性模型转成 onnx1.2、导出多个输出头的模型1.3、导出含有动态维度的模型 二、pytorch 导出 onnx 不成功的时候如何解决2.1、修改 opset 的版本2.2、替换 pytorch 中的算子组合2.3、在 pytorch 登记&…

deep learning with pytorch(一)

1.create a basic nerual network model with pytorch 数据集 Iris UCI Machine Learning Repository fully connected 目标:创建从输入层的代码开始&#xff0c;向前移动到隐藏层&#xff0c;最后到输出层 # %% import torch import torch.nn as nn import torch.nn.funct…

Angular基础---HelloWorld---Day1

文章目录 1. 创建Angular 项目2.对Angular架构的最基本了解3.创建并引用新的组件&#xff08;component&#xff09;4.对Angular架构新的认识&#xff08;多组件&#xff09;5.组件中业务逻辑文件的编辑&#xff08;ts文件&#xff09;6.标签中属性的绑定(1) ID的绑定(2) class…

AI大模型与小模型之间的“脱胎”与“反哺”(第二篇)

此图片来源于网络 21. **跨模态学习&#xff08;Cross-Modal Learning&#xff09;**&#xff1a; 如果各个行业AI小模型涉及多种数据类型或模态&#xff0c;可以通过跨模态学习技术让大模型理解并整合这些不同模态之间的关联&#xff0c;从而提升对多行业复杂问题的理解和解…

【Redis 主从复制】

文章目录 1 :peach:环境配置:peach:1.1 :apple:三种配置方式:apple:1.2 :apple:验证:apple:1.3 :apple:断开复制和切主:apple:1.4 :apple:安全性:apple:1.5 :apple:只读:apple:1.6 :apple:传输延迟:apple: 2 :peach:拓扑结构:peach:2.1 :apple:⼀主⼀从结构:apple:2.2 :apple:⼀…

【FPGA/IC】CRC电路的Verilog实现

前言 在通信过程中由于存在各种各样的干扰因素&#xff0c;可能会导致发送的信息与接收的信息不一致&#xff0c;比如发送数据为 1010_1010&#xff0c;传输过程中由于某些干扰&#xff0c;导致接收方接收的数据却成了0110_1010。为了保证数据传输的正确性&#xff0c;工程师们…

30天JS挑战(第十五天)------本地存储菜谱

第十五天挑战(本地存储菜谱) 地址&#xff1a;https://javascript30.com/ 所有内容均上传至gitee&#xff0c;答案不唯一&#xff0c;仅代表本人思路 中文详解&#xff1a;https://github.com/soyaine/JavaScript30 该详解是Soyaine及其团队整理编撰的&#xff0c;是对源代…

【数据结构】B树

1 B树介绍 B树&#xff08;英语&#xff1a;B-tree&#xff09;&#xff0c;是一种在计算机科学自平衡的树&#xff0c;能够保持数据有序。这种数据结构能够让查找数据、顺序访问、插入数据及删除的动作&#xff0c;都在对数时间内完成。B树&#xff0c;概括来说是一个一般化的…

CAS外部云迁移vmware虚拟机兼容性问题处理

CAS外部云迁移vmware虚拟机兼容性问题处理 1、迁移过程中报错实图 2、问题原因 打开虚拟机存储的位置&#xff0c;发现文件夹下存在ctk.vmdk的文件 3、在vmware右键虚拟机编辑设置 注&#xff1a;虚拟机需要先关机 点击虚拟机选项——高级——编辑设置 将ctk.ENABLED改为…

第五套CCF信息学奥赛c++练习题 CSP-J认证初级组 中小学信奥赛入门组初赛考前模拟冲刺题(选择题)

第五套中小学信息学奥赛CSP-J考前冲刺题 1、不同类型的存储器组成了多层次结构的存储器体系,按存取速度从快到慢排列的是 A、快存/辅存/主存 B、外存/主存/辅存 C、快存/主存/辅存 D、主存/辅存/外存 答案&#xff1a;C 考点分析&#xff1a;主要考查计算机相关知识&…

在ubuntu上安装hadoop完分布式

准备工作 Xshell安装包 Xftp7安装包 虚拟机安装包 Ubuntu镜像源文件 Hadoop包 Java包 一、安装虚拟机 创建ubuntu系统 完成之后会弹出一个新的窗口 跑完之后会重启一下 按住首先用ctrlaltf3进入命令界面&#xff0c;输入root&#xff0c;密码登录管理员账号 按Esc 然后输入 …

蓝牙BLE 5.0、5.1、5.2和5.3区别

随着科技的不断发展&#xff0c;蓝牙技术也在不断进步&#xff0c;其中蓝牙BLE&#xff08;Bluetooth Low Energy&#xff09;是目前应用广泛的一种蓝牙技术&#xff0c;而BLE 5.0、5.1、5.2和5.3则是其不断升级的版本。本文将对这四个版本的区别进行详细的比较。 一、BLE 5.0…

为啥要用C艹不用C?

在很多时候&#xff0c;有人会有这样的疑问 ——为什么要用C&#xff1f;C相对于C优势是什么&#xff1f; 最近两年一直在做Linux应用&#xff0c;能明显的感受到C带来到帮助以及快感 之前&#xff0c;我在文章里面提到环形队列 C语言&#xff0c;环形队列 环形队列到底是怎么回…

FPGA高端项目:FPGA基于GS2971的SDI视频接收+纯verilog图像缩放+多路视频拼接,提供8套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本方案的SDI接收转HDMI输出应用本方案的SDI接收图像缩放应用本方案的SDI接收HLS图像缩放HLS多路视频拼接应用本方案的SDI接收HLS动态字符叠加输出应用本方案的SDI接收HLS多路视频融合叠加应用本方案的SDI接收GTX…

【代码】Android|获取压力传感器、屏幕压感数据(大气压、原生和Processing)

首先需要分清自己需要的是大气压还是触摸压力&#xff0c;如果是大气压那么就是TYPE_PRESSURE&#xff0c;可以参考https://source.android.google.cn/docs/core/interaction/sensors/sensor-types?hlzh-cn。如果是触摸压力就是另一回事&#xff0c;我需要的是触摸压力。 不过…

【算法沉淀】刷题笔记:并查集 带权并查集+实战讲解

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《数据结构与算法&#xff1a;初学者入门指南》&#x1f4d8;&am…

Windows Server 各版本搭建文件服务器实现共享文件(03~19)

一、Windows Server 2003 打开服务器&#xff0c;点击左下角开始➡管理工具➡管理您的服务器➡添加或删除角色 点击下一步等待测试 勾选自定义配置&#xff0c;点击下一步 选择文件服务器&#xff0c;点击下一步 勾选设置默认磁盘空间&#xff0c;数据自己更改&#xff0c;最…