机器学习:集成学习(Python)

一、Adaboost算法

1.1 Adaboost分类算法

adaboost_discrete_c.py

import numpy as np
import copy
from ch4.decision_tree_C import DecisionTreeClassifier


class AdaBoostClassifier:
    """
    adaboost分类算法:既可以做二分类、也可以做多分类,取决于基本分类器
    1. 同质学习器:非列表形式,按同种类型的基学习器构造
    2. 异质学习器:列表传递[logisticsregression, svm, cart, ...]
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeClassifier(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.estimator_weights = []  # 每个基学习器的权重系数

    def fit(self, x_train, y_train):
        """
        训练AdaBoost每个基学习器,计算权重分布,每个基学习器的误差率和权重系数α,
        :param x_train: 训练集,二维数组:m * k
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples, n_class = x_train.shape[0], len(set(y_train))  # 样本量,类别数
        sample_weight = np.ones(n_samples)  # 为适应自写的基学习器,设置样本均匀权重为1.0
        # 针对每一个基学习器,根据带有权重分布的训练集训练基学习器,计算相关参数
        for idx in range(self.n_estimators):
            # 1. 使用具有权重分布的Dm的训练数据集学习,并预测
            self.base_estimator[idx].fit(x_train, y_train, sample_weight=sample_weight)
            # 只关心分类错误的,如果分类错误,则为0,正确则为1
            y_hat_0 = (self.base_estimator[idx].predict(x_train) == y_train).astype(int)
            # 2. 计算分类误差率
            error_rate = sample_weight.dot(1.0 - y_hat_0) / n_samples
            if error_rate > 0.5:
                self.estimator_weights.append(0)  # 当前基分类器不起作用
                continue
            # 3. 计算基分类器的权重系数,考虑溢出
            alpha_rate = 0.5 * np.log((1 - error_rate) / error_rate + 1e-8) + np.log(n_class - 1)
            alpha_rate = min(10.0, alpha_rate)  # 避免权重系数过大
            self.estimator_weights.append(alpha_rate)
            # 4. 更新样本权重,为了适应多分类,yi*Gm(xi)计算np.power(-1.0, 1 - y_hat_0)
            sample_weight *= np.exp(-1.0 * alpha_rate * np.power(-1.0, 1 - y_hat_0))
            sample_weight = sample_weight / np.sum(sample_weight) * n_samples
        # 5. 更新estimator的权重系数,按照学习率
        for i in range(self.n_estimators):
            self.estimator_weights[i] *= np.power(self.learning_rate, i)

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别概率,软投票
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        # 按照加法模型,线性组合基学习器
        # 每个测试样本,每个基学习器预测概率(10,[(0.68, 0.32),(0.55, 0.45)]...)
        y_hat_prob = np.sum([self.base_estimator[i].predict_proba(x_test) *
                             self.estimator_weights[i] for i in range(self.n_estimators)], axis=0)
        return y_hat_prob / y_hat_prob.sum(axis=1, keepdims=True)

    def predict(self, x_test):
        """
        预测测试样本所属类别
        :param x_test: 测试样本集
        :return:
        """
        return np.argmax(self.predict_proba(x_test), axis=1)

1.2 Adaboost回归算法

adaboost_regressor.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class AdaBoostRegressior:
    """
    adaboost回归算法:结合(集成)策略:加权中位数、预测值的平均加权
    1. 同质学习器,异质学习器
    2. 回归误差率依赖于相对误差:平方误差、线性误差、指数误差
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0,
                 loss="square", comb_strategy="weight_median"):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        :param loss: 损失函数:linear、square、exp
        :param comb_strategy: weight_median、weight_mean
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.loss = loss  # 相对误差的损失函数
        self.comb_strategy = comb_strategy  # 结合策略
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.estimator_weights = []  # 每个基学习器的权重系数

    def _cal_loss(self, y_true, y_hat):
        """
        根据损失函数计算相对误差
        :param y_true: 真值
        :param y_hat: 预测值
        :return:
        """
        errors = np.abs(y_true - y_hat)  # 绝对值误差
        if self.loss.lower() == "linear":  # 线性
            return errors / np.max(errors)
        elif self.loss.lower() == "square":  # 平方
            errors_s = (y_true - y_hat) ** 2
            return errors_s / np.max(errors) ** 2
        elif self.loss.lower() == "exp":  # 指数
            return 1 - np.exp(-errors / np.max(errors))
        else:
            raise ValueError("仅支持linear、square和exp...")

    def fit(self, x_train, y_train):
        """
        Adaboost回归算法,T个基学习器的训练:
        1. 基学习器基于权重分布Dt的训练集训练
        2. 计算最大绝对误差、相对误差、回归误差率
        3. 计算当前ht的置信度
        4. 更新下一轮的权重分布
        :param x_train:
        :param y_train:
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples, n_class = x_train.shape[0], len(set(y_train))  # 样本量,类别数
        sample_weight = np.ones(n_samples)  # 为适应自写的基学习器,设置样本均匀权重为1.0
        for idx in range(self.n_estimators):
            # 1. 基学习器基于权重分布Dt的训练集训练以及预测
            self.base_estimator[idx].fit(x_train, y_train, sample_weight=sample_weight)
            y_hat = self.base_estimator[idx].predict(x_train)  # 当前训练集的预测值
            # 2. 计算最大绝对误差、相对误差、回归误差率
            errors = self._cal_loss(y_train, y_hat)  # 相对误差
            error_rate = np.dot(errors, sample_weight / n_samples)  # 回归误差率
            # 3. 计算当前ht的置信度,基学习器的权重参数
            alpha_rate = error_rate / (1 - error_rate)
            self.estimator_weights.append(alpha_rate)
            # 4. 更新下一轮的权重分布
            sample_weight *= np.power(alpha_rate, 1 - errors)
            sample_weight = sample_weight / np.sum(sample_weight) * n_samples
        # 5. 计算基学习器的权重系数以及考虑学习率
        self.estimator_weights = np.log(1 / np.asarray(self.estimator_weights))
        for i in range(self.n_estimators):
            self.estimator_weights[i] *= np.power(self.learning_rate, i)

    def predict(self, x_test):
        """
        Adaboost回归算法预测,按照加权中位数以及加权平均两种结合策略
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        if self.comb_strategy == "weight_mean":  # 加权平均
            self.estimator_weights /= np.sum(self.estimator_weights)
            # n * T
            y_hat_mat = np.array([self.estimator_weights[i] *
                                  self.base_estimator[i].predict(x_test)
                                  for i in range(self.n_estimators)])
            # print(y_hat_mat.shape) (10, 5160)
            return np.sum(y_hat_mat, axis=0)
        elif self.comb_strategy == "weight_median":  # 加权中位数
            # T个基学习器的预测结果构成一个二维数组(10, 5160)
            y_hat_mat = np.array([self.estimator_weights[i] *
                                  self.base_estimator[i].predict(x_test)
                                  for i in range(self.n_estimators)]).T
            sorted_idx = np.argsort(y_hat_mat, axis=1)  # 二维数组
            # 按照每个样本预测值的升序排列序号,排序权重系数,然后累加计算
            weight_cdf = np.cumsum(self.estimator_weights[sorted_idx], axis=1)
            # 选择最小的t,如下代码产生二维bool数组
            median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis]
            # print(median_idx)
            median_idx = np.argmax(median_or_above, axis=1)  # 返回每个样本的t索引值
            median_estimators = sorted_idx[np.arange(x_test.shape[0]), median_idx]
            return y_hat_mat[np.arange(x_test.shape[0]), median_estimators]


1.3 SAMME算法

samme_r_muti_classifier.py 

import numpy as np
import copy
from ch4.decision_tree_C import DecisionTreeClassifier


class SAMMERClassifier:
    """
    SAMME.R算法是将SAMME拓展到连续数值型的范畴。
    基学习器的输出为连续型,一般为类别概率的预测值。
    """
    def __init__(self, base_estimator=None, n_estimators=10):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeClassifier(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.estimator_weights = []  # 每个基学习器的权重系数
        self.n_samples, self.n_class = None, None  # 样本量和类别数

    def _target_encoding(self, y_train):
        """
        对目标值进行编码
        :param y_train: 训练目标集
        :return:
        """
        self.n_samples, self.n_class = len(y_train), len(set(y_train))
        target = -1 / (self.n_class - 1) * np.ones((self.n_samples, self.n_class))
        for i in range(self.n_samples):
            target[i, y_train[i]] = 1  # 对应该样本的类别所在编码中的列改为1
        return target

    def fit(self, x_train, y_train):
        """
        训练SAMME.Rt每个基学习器,根据预测类别概率计算权重分布
        :param x_train: 训练集,二维数组:m * k
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        target = self._target_encoding(y_train)  # 编码
        sample_weight = np.ones(self.n_samples)  # 为适应自写的基学习器,设置样本均匀权重为1.0
        # 针对每一个基学习器,根据带有权重分布的训练集训练基学习器,计算相关参数
        c = (self.n_class - 1) / self.n_class
        for idx in range(self.n_estimators):
            # 1. 使用具有权重分布的Dm的训练数据集学习,并预测
            self.base_estimator[idx].fit(x_train, y_train, sample_weight=sample_weight)
            # 根据训练的基学习器,获得其样本的预测类别概率
            pred_p = self.base_estimator[idx].predict_proba(x_train)
            # 针对预测概率,小于eps的值替换为eps,避免log函数溢出
            np.clip(pred_p, np.finfo(pred_p.dtype).eps, None, out=pred_p)
            # 2. 更新样本权重
            sample_weight *= np.exp(-c * (target * np.log(pred_p)).sum(axis=1))
            sample_weight = sample_weight / np.sum(sample_weight) * self.n_samples

    @staticmethod
    def softmax_func(x):
        """
        softmax函数,为避免上溢或下溢,对参数x做限制
        :param x: 数组: batch_size * n_classes
        :return:  1 * n_classes
        """
        exps = np.exp(x - np.max(x))  # 避免溢出,每个数减去其最大值
        exp_sum = np.sum(exps, axis=1, keepdims=True)
        return exps / exp_sum

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别概率,软投票
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        C_x = np.zeros((x_test.shape[0], self.n_class))
        for i in range(self.n_estimators):
            y_prob = self.base_estimator[i].predict_proba(x_test)
            np.clip(y_prob, np.finfo(y_prob.dtype).eps, None, out=y_prob)
            y_ln = np.log(y_prob)
            C_x += (self.n_class - 1) * (y_ln - np.sum(y_ln, axis=1, keepdims=True) / self.n_class)
        return C_x

    def predict(self, x_test):
        """
        预测测试样本所属类别
        :param x_test: 测试样本集
        :return:
        """
        return np.argmax(self.predict_proba(x_test), axis=1)

1.4 Adaboost分类算法测试

test_adaboost_c.py

from sklearn.datasets import make_classification
from sklearn.metrics import classification_report

from ch4.decision_tree_C import DecisionTreeClassifier  # 基学习器,决策树
from ch3.logistic_regression_2class import LogisticRegression  # 逻辑回归
from ch6.svm_smo_classifier import SVMClassifier  # 支持向量机
from adaboost_discrete_c import AdaBoostClassifier
from ch8.plt_decision_function import plot_decision_function


X, y = make_classification(n_samples=300, n_features=2, n_informative=1, n_redundant=0, n_repeated=0, n_classes=2,
                           n_clusters_per_class=1, class_sep=1, random_state=42)
# 同质:同种类型的基学习器
base_tree = DecisionTreeClassifier(max_depth=3, is_feature_all_R=True, max_bins=20)
ada_bc = AdaBoostClassifier(base_estimator=base_tree, n_estimators=10, learning_rate=1.0)
ada_bc.fit(X, y)  # adaboost训练
print("基学习器的权重系数:\n", ada_bc.estimator_weights)
y_pred = ada_bc.predict(X)  # 预测类别
print(classification_report(y, y_pred))
plot_decision_function(X, y, ada_bc)

# 异质:不同类型的基学习器
log_reg = LogisticRegression(batch_size=20, max_epochs=5)
cart = DecisionTreeClassifier(max_depth=4, is_feature_all_R=True)
svm = SVMClassifier(C=5.0, max_epochs=20)
ada_bc2 = AdaBoostClassifier(base_estimator=[log_reg, cart, svm], learning_rate=1.0)
ada_bc2.fit(X, y)  # adaboost训练
print("异质基学习器的权重系数:", ada_bc2.estimator_weights)
y_pred = ada_bc2.predict(X)  # 预测类别
print(classification_report(y, y_pred))
plot_decision_function(X, y, ada_bc2)


 test_adaboost_c2.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_blobs
from ch4.decision_tree_C import DecisionTreeClassifier
from ch8.adaboost_discrete_c import AdaBoostClassifier


X, y = make_blobs(n_samples=1000, n_features=10, centers=5, cluster_std=[1.5, 2, 0.9, 3, 2.8], random_state=0)
X = StandardScaler().fit_transform(X)

base_em = DecisionTreeClassifier(max_depth=4, is_feature_all_R=True, max_bins=10)
acc_scores = []  # 存储每次交叉验证的均分
# 用10折交叉验证评估不同基学习器个数T下的分类正确率
for n in range(1, 21):
    scores = []  # 一次交叉验证的acc均值
    k_fold = KFold(n_splits=10)
    for idx_train, idx_test in k_fold.split(X, y):
        classifier = AdaBoostClassifier(base_estimator=base_em, n_estimators=n, learning_rate=1)
        classifier.fit(X[idx_train, :], y[idx_train])
        y_test_pred = classifier.predict(X[idx_test, :])
        scores.append(accuracy_score(y[idx_test], y_test_pred))
    acc_scores.append(np.mean(scores))
    print(n, ":", acc_scores[-1])

plt.figure(figsize=(7, 5))
plt.plot(range(1, 21), acc_scores, "ko-", lw=1)
plt.xlabel("Number of Estimations", fontdict={"fontsize": 12})
plt.ylabel("Accuracy Score", fontdict={"fontsize": 12})
plt.title("Cross Validation Scores of Different Number of Base Learners", fontdict={"fontsize": 14})
plt.grid(ls=":")
plt.show()

1.5 Adaboost回归算法测试

test_adaboost_regressor.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from ch4.decision_tree_R import DecisionTreeRegression
from ch8.adaboost_regressor import AdaBoostRegressior


housing = fetch_california_housing()
X, y = housing.data, housing.target
# print(X.shape)
# print(y.shape)
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

base_ht = DecisionTreeRegression(max_bins=50, max_depth=5)
plt.figure(figsize=(14, 15))


def train_plot(cs, loss, i):
    abr = AdaBoostRegressior(base_estimator=base_ht, n_estimators=30,
                             comb_strategy=cs, loss=loss)
    abr.fit(X_train, y_train)
    y_hat = abr.predict(X_test)
    # print(r2_score(y_test, y_hat))
    plt.subplots(231 + i)
    idx = np.argsort(y_test)  # 对真值排序
    plt.plot(y_test[idx], "k-", lw=1.5, label="Test True")
    plt.plot(y_hat[idx], "r-", lw=1, label="Predict")
    plt.legend(frameon=False)
    plt.title("%s, %s, R2 = %.5f, MSE = %.5f" %
              (cs, loss, r2_score(y_test, y_hat), ((y_test - y_hat) ** 2).mean()))
    plt.xlabel("Test Samples Serial Number", fontdict={"fontsize": 12})
    plt.ylabel("True VS Predict", fontdict={"fontsize": 12})
    plt.grid(ls=":")
    print(cs, loss)


loss_func = ["linear", "square", "exp"]
comb_strategy = ["weight_mean", "weight_median"]
i = 0
for loss in loss_func:
    for cs in comb_strategy:
        train_plot(cs, loss, i)
        i += 1
plt.show()

 1.6 SAMME算法测试

test_samme_r_c.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_blobs
# from ch4.decision_tree_C import DecisionTreeClassifierR
from sklearn.tree import DecisionTreeClassifier
from ch8.samme_r_muti_classifier import SAMMERClassifier


X, y = make_blobs(n_samples=1000, n_features=10, centers=5, cluster_std=[1.5, 2, 0.9, 3, 2.8], random_state=0)
X = StandardScaler().fit_transform(X)

base_em = DecisionTreeClassifier(max_depth=4)
acc_scores = []  # 存储每次交叉验证的均分
# 用10折交叉验证评估不同基学习器个数T下的分类正确率
for n in range(1, 21):
    scores = []  # 一次交叉验证的acc均值
    k_fold = KFold(n_splits=10)
    for idx_train, idx_test in k_fold.split(X, y):
        classifier = SAMMERClassifier(base_estimator=base_em, n_estimators=n)
        classifier.fit(X[idx_train, :], y[idx_train])
        y_test_pred = classifier.predict(X[idx_test, :])
        scores.append(accuracy_score(y[idx_test], y_test_pred))
    acc_scores.append(np.mean(scores))
    print(n, ":", acc_scores[-1])

plt.figure(figsize=(7, 5))
plt.plot(range(1, 21), acc_scores, "ko-", lw=1)
plt.xlabel("Number of Estimations", fontdict={"fontsize": 12})
plt.ylabel("Accuracy Score", fontdict={"fontsize": 12})
plt.title("Cross Validation Scores of Different Number of Base Learners", fontdict={"fontsize": 14})
plt.grid(ls=":")
plt.show()

1.7 可视化分类边界函数

 plt_decision_function.py

import matplotlib.pyplot as plt
import numpy as np


def plot_decision_function(X, y, clf, is_show=True):
    """
    可视化分类边界函数
    :param X: 测试样本
    :param y: 测试样本的类别
    :param clf: 分类模型
    :param is_show: 是否在当前显示图像,用于父函数绘制子图
    :return:
    """
    if is_show:
        plt.figure(figsize=(7, 5))
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xi, yi = np.meshgrid(np.linspace(x_min, x_max, 100),
                         np.linspace(y_min, y_max, 100))
    y_pred = clf.predict(np.c_[xi.ravel(), yi.ravel()])  # 模型预测值
    y_pred = y_pred.reshape(xi.shape)
    plt.contourf(xi, yi, y_pred, cmap="winter", alpha=0.4)
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors="k")
    plt.xlabel("Feature 1", fontdict={"fontsize": 12})
    plt.ylabel("Feature 2", fontdict={"fontsize": 12})
    plt.title("Model Classification Boundary", fontdict={"fontsize": 14})
    if is_show:
        plt.show()

二、提升树算法boosting tree

2.1 提升树回归算法

boostingtree_r.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class BoostTreeRegressor:
    """
    提升树回归算法,采用平方误差损失
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)

    def fit(self, x_train, y_train):
        """
        提升树的训练,针对每个基决策树算法,拟合上一轮的残差
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        # 1. 训练第一棵回归决策树,并预测
        self.base_estimator[0].fit(x_train, y_train)
        y_hat = self.base_estimator[0].predict(x_train)
        y_residual = y_train - y_hat  # 残差,MSE的负梯度
        # 2. 从第二棵树开始,每一轮拟合上一轮的残差
        for idx in range(1, self.n_estimators):
            self.base_estimator[idx].fit(x_train, y_residual)  # 拟合残差
            # 累加第m-1棵树的预测值,当前模型是f_(m-1)
            y_hat += self.base_estimator[idx].predict(x_train) * self.learning_rate
            y_residual = y_train - y_hat  # 当前模型的残差

    def predict(self, x_test):
        """
        回归提升树的预测
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        y_hat_mat = np.sum([self.base_estimator[0].predict(x_test)] +
                            [np.power(self.learning_rate, i) * self.base_estimator[i].predict(x_test)
                             for i in range(1, self.n_estimators - 1)] +
                            [self.base_estimator[-1].predict(x_test)], axis=0)
        return y_hat_mat


2.2 梯度提升树分类算法

gradientboosting_c

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class GradientBoostClassifier:
    """
    梯度提升树多分类算法:多分类也可用回归树来做,即训练与类别数相同的几组回归树,
    每一组代表一个类别,然后对所有组的输出进行softmax操作将其转换为概率分布,
    再通过交叉熵或者KL一类的损失函数求每棵树相应的负梯度,指导下一轮的训练。
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.base_estimators = []  # 扩展到class_num组分类器

    @staticmethod
    def one_hot_encoding(target):
        class_labels = np.unique(target)
        target_y = np.zeros((len(target), len(class_labels)), dtype=np.int32)
        for i, label in enumerate(target):
            target_y[i, label] = 1  # 对应类别所在的列为1
        return target_y

    @staticmethod
    def softmax_func(x):
        exps = np.exp(x - np.max(x))
        return exps / np.sum(exps, axis=1, keepdims=True)

    def fit(self, x_train, y_train):
        """
        梯度提升分类算法的训练,共训练M * K个基学习器
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        class_num = len(np.unique(y_train))  # 类别数
        y_encoded = self.one_hot_encoding(y_train)
        # 深拷贝class_num组分类器,每组(每个类别)n_estimators个基学习器
        # 假设是三分类:[[0, 1, 2, ..., 9], [10], [10]]
        self.base_estimators = [copy.deepcopy(self.base_estimator) for _ in range(class_num)]

        # 初始化第一轮基学习器,针对每个类别,分别训练一个基学习器
        y_hat_scores = []  # 用于存储每个类别的预测值
        for c_idx in range(class_num):
            self.base_estimators[c_idx][0].fit(x_train, y_encoded[:, c_idx])
            y_hat_scores.append(self.base_estimators[c_idx][0].predict(x_train))
        y_hat_scores = np.c_[y_hat_scores].T  # 把每个类别的预测值构成一列,(120, 3) (n_samples, class_num)
        # print(np.asarray(y_hat_vals).shape)
        grad_y = y_encoded - self.softmax_func(y_hat_scores)  # 按类别计算样本的负梯度值

        # 训练后续基学习器,共M - 1轮,每轮针对每个类别,分别训练一个基学习器
        for idx in range(1, self.n_estimators):
            y_hat_values = []  # 用于存储每个类别的预测值
            for c_idx in range(class_num):
                self.base_estimators[c_idx][idx].fit(x_train, grad_y[:, c_idx])
                y_hat_values.append(self.base_estimators[c_idx][idx].predict(x_train))
            y_hat_scores += np.c_[y_hat_values].T * self.learning_rate
            # print(np.asarray(y_hat_vals).shape)
            grad_y = y_encoded - self.softmax_func(y_hat_scores)  # 按类别计算样本的负梯度值

    def predict_proba(self, x_test):
        """
        预测测试样本所属类别的概率
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        y_hat_scores = []
        for c_idx in range(len(self.base_estimators)):
            # 取当前类别的M个基学习器
            estimator = self.base_estimators[c_idx]
            y_hat_scores.append(np.sum([estimator[0].predict(x_test)] +
                                       [self.learning_rate * estimator[i].predict(x_test)
                                       for i in range(1, self.n_estimators - 1)] +
                                       [estimator[-1].predict(x_test)], axis=0))
        # y_hat_scores的维度(3 * 30)
        return self.softmax_func(np.c_[y_hat_scores].T)

    def predict(self, x_test):
        """
        预测测试样本所属类别,概率大的idx标记为类别
        :param x_test: 测试样本集
        :return:
        """
        print(self.predict_proba(x_test))
        return np.argmax(self.predict_proba(x_test), axis=1)

 2.3 梯度提升树回归算法

gradientboosting_r

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART


class GradientBoostRegressor:
    """
    梯度提升树回归算法,损失函数:五个,以损失函数在当前模型的负梯度近似为残差
    """
    def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0,
                 loss="ls", huber_threshold=0.1, quantile_threshold=0.5):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param learning_rate: 学习率,降低后续训练的基分类器的权重,避免过拟合
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            self.base_estimator = DecisionTreeRegression(max_depth=2)
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.loss = loss  # 损失函数的类型
        self.huber_threshold = huber_threshold  # 仅对Huber损失有效
        self.quantile_threshold = quantile_threshold  # 仅对分位数损失函数有效

    def _cal_negative_gradient(self, y_true, y_pred):
        """
        计算负梯度值
        :param y_true: 真值
        :param y_pred: 预测值
        :return:
        """
        if self.loss.lower() == "ls":  # MSE
            return y_true - y_pred
        elif self.loss.lower() == "lae":  # MAE
            return np.sign(y_true - y_pred)
        elif self.loss.lower() == "huber":  # 平滑平均绝对损失
            return np.where(np.abs(y_true - y_pred) > self.huber_threshold,
                            self.huber_threshold * np.sign(y_true - y_pred),
                            y_true - y_pred)
        elif self.loss.lower() == "quantile":  # 分位数损失
            return np.where(y_true > y_pred, self.quantile_threshold,
                            self.quantile_threshold - 1)
        elif self.loss.lower() == "logcosh":  # 双曲余弦的对数的负梯度
            return -np.tanh(y_pred - y_true)
        else:
            raise ValueError("仅限于ls、lae、huber、quantile和logcosh,选择有误...")

    def fit(self, x_train, y_train):
        """
        提升树的训练,针对每个基决策树算法,拟合上一轮的残差
        1. 假设回归决策树以mse构建的,针对不同的损失函数,计算不同的基尼指数划分标准
        2. 预测,集成,也根据不同的损失函数,预测叶子结点的输出...
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        # 1. 训练第一棵回归决策树,并预测
        self.base_estimator[0].fit(x_train, y_train)
        y_hat = self.base_estimator[0].predict(x_train)
        y_residual = self._cal_negative_gradient(y_train, y_hat)  # 负梯度
        # 2. 从第二棵树开始,每一轮拟合上一轮的残差
        for idx in range(1, self.n_estimators):
            self.base_estimator[idx].fit(x_train, y_residual)  # 拟合残差
            # 累加第m-1棵树的预测值,当前模型是f_(m-1)
            y_hat += self.base_estimator[idx].predict(x_train) * self.learning_rate
            y_residual = self._cal_negative_gradient(y_train, y_hat)  # 负梯度

    def predict(self, x_test):
        """
        回归提升树的预测
        :param x_test: 测试样本集
        :return:
        """
        x_test = np.asarray(x_test)
        y_hat_mat = np.sum([self.base_estimator[0].predict(x_test)] +
                            [np.power(self.learning_rate, i) * self.base_estimator[i].predict(x_test)
                             for i in range(1, self.n_estimators - 1)] +
                            [self.base_estimator[-1].predict(x_test)], axis=0)
        return y_hat_mat


 2.4 提升树算法测试

test_boosting_tree_r.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from ch4.decision_tree_R import DecisionTreeRegression
from ch8.boostingtree_r import BoostTreeRegressor
from sklearn.tree import DecisionTreeRegressor


# housing = fetch_california_housing()
# X, y = housing.data[0:20000:100, :], housing.target[0:20000:100]
# print(X.shape)
# print(y.shape)
# X = StandardScaler().fit_transform(X)
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

X = np.linspace(1, 10, 10).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05])

# base_ht = DecisionTreeRegression(max_bins=10, max_depth=1)
base_ht = DecisionTreeRegressor(max_depth=1)
# n_estimators = np.linspace(2, 31, 29, dtype=np.int32)
# r2_scores = []
# for n in n_estimators:
#     btr = BoostTreeRegressior(base_estimator=base_ht, n_estimators=n)
#     btr.fit(X_train, y_train)
#     y_hat = btr.predict(X_test)
#     # print(r2_score(y_test, y_hat))
#     r2_scores.append(r2_score(y_test, y_hat))
#     print(n, ":", r2_scores[-1])

r2_scores = []
for n in range(1, 7):
    btr = BoostTreeRegressor(base_estimator=base_ht, n_estimators=n)
    btr.fit(X, y)
    y_hat = btr.predict(X)
    # print(r2_score(y_test, y_hat))
    r2_scores.append(r2_score(y, y_hat))
    print(n, ":", r2_scores[-1], np.sum((y - y_hat) ** 2))

# plt.figure(figsize=(7, 5))
# plt.plot(n_estimators, r2_scores, "ko-", lw=1)
# plt.show()

# idx = np.argsort(y_test)  # 对真值排序
#
# plt.figure(figsize=(7, 5))
# plt.plot(y_test[idx], "k-", lw=1.5, label="Test True")
# plt.plot(y_hat[idx], "r-", lw=1, label="Predict")
# plt.legend(frameon=False)
# plt.title("Regression Boosting Tree, R2 = %.5f, MSE = %.5f" %
#           (r2_score(y_test, y_hat), ((y_test - y_hat) ** 2).mean()))
# plt.xlabel("Test Samples Serial Number", fontdict={"fontsize": 12})
# plt.ylabel("True VS Predict", fontdict={"fontsize": 12})
# plt.grid(ls=":")
#
# plt.show()

 2.5 梯度提升树算法测试

test_gradboost_c1.py

from ch8.gradientboosting_c import GradientBoostClassifier
from sklearn.datasets import load_iris, load_digits, load_breast_cancer
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from ch4.decision_tree_R import DecisionTreeRegression
from sklearn.tree import DecisionTreeRegressor


# iris = load_iris()
# X, y = iris.data, iris.target

digits = load_digits()
X, y = digits.data, digits.target

# bc_data = load_breast_cancer()
# X, y = bc_data.data, bc_data.target

X = PCA(n_components=10).fit_transform(X)
X = StandardScaler().fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True, random_state=42)

# base_es = DecisionTreeRegression(max_bins=50, max_depth=3)
base_es = DecisionTreeRegressor(max_depth=3)

gbc = GradientBoostClassifier(base_estimator=base_es, n_estimators=50)
gbc.fit(X_train, y_train)
y_hat = gbc.predict(X_test)
print(classification_report(y_test, y_hat))

 三、Bagging算法

3.1 Bagging算法

bagging_c_r.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, r2_score


class BaggingClassifierRegressor:
    """
    1. Bagging的基本流程:采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再集成。
    2. 预测输出进行结合:Bagging通常对分类任务采用简单投票法,对回归任务使用简单平均法。
    3. 把回归任务与分类任务集成到一个算法中,右参数task来控制,包外估计OOB控制
    """
    def __init__(self, base_estimator=None, n_estimators=10, task="C", OOB=False):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param task: 任务:C代表分类任务,R代表回归任务
        :param OOB: 布尔变量,True表示进行包外估计
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.task = task
        if task.lower() not in ["c", "r"]:
            raise ValueError("Bagging任务仅限分类(C/c)、回归(R/r)")
        # 如果不提供基学习器,则默认按照深度为2的决策树作为基分类器
        if self.base_estimator is None:
            if self.task.lower() == "c":
                self.base_estimator = DecisionTreeClassifier()
            elif self.task.lower() == "r":
                self.base_estimator = DecisionTreeRegression()
        if type(base_estimator) != list:
            # 同质(同种类型)的分类器,深拷贝
            self.base_estimator = [copy.deepcopy(self.base_estimator)
                                   for _ in range(self.n_estimators)]
        else:
            # 异质(不同种类型)的分类器
            self.n_estimators = len(self.base_estimator)
        self.OOB = OOB  # 是否进行包外估计
        self.oob_indices = []  # 保存每次有放回采样未被使用的样本索引
        self.y_oob_hat = None  # 包括估计样本预测值(回归)或预测类别概率(分类)
        self.oob_score = None  # 包外估计的评分,分类和回归

    def fit(self, x_train, y_train):
        """
        Bagging算法(包含分类和回归)的训练
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples = x_train.shape[0]
        for estimator in self.base_estimator:
            # 1. 有放回的随机重采样训练集
            indices = np.random.choice(n_samples, n_samples, replace=True)  # 采样样本索引
            indices = np.unique(indices)
            x_bootstrap, y_bootstrap = x_train[indices, :], y_train[indices]
            # 2. 基于采样数据,训练基学习器
            estimator.fit(x_bootstrap, y_bootstrap)
            # 存储每个基学习器未使用的样本索引
            n_indices = set(np.arange(n_samples)).difference(set(indices))
            self.oob_indices.append(list(n_indices))  # 每个基学习器未参与训练的样本索引

        # 3. 包外估计
        if self.OOB:
            if self.task.lower() == "c":
                self._oob_score_classifier(x_train, y_train)
            else:
                self._oob_score_regressor(x_train, y_train)

    def _oob_score_classifier(self, x_train, y_train):
        """
        分类任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    y_hat = self.base_estimator[idx].predict_proba(x_train[i, np.newaxis])
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(np.c_[y_hat_i], axis=0))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = accuracy_score(y_true, np.argmax(self.y_oob_hat, axis=1))

    def _oob_score_regressor(self, x_train, y_train):
        """
        回归任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    y_hat = self.base_estimator[idx].predict(x_train[i, np.newaxis])
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(y_hat_i))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = r2_score(y_true, self.y_oob_hat)

    def predict_proba(self, x_test):
        """
        分类任务中测试样本所属类别的概率预测
        :param x_test:
        :return:
        """
        if self.task.lower() != "c":
            raise ValueError("predict_proba()仅适用于分类任务。")
        x_test = np.asarray(x_test)
        y_test_hat = []  # 用于存储测试样本所属类别概率
        for estimator in self.base_estimator:
            y_test_hat.append(estimator.predict_proba(x_test))
        # print(y_test_hat)
        return np.mean(y_test_hat, axis=0)

    def predict(self, x_test):
        """
        分类任务:预测测试样本所属类别,类别概率大者索引为所属类别
        回归任务:预测测试样本,对每个基学习器预测值简单平均
        :param x_test:
        :return:
        """
        if self.task.lower() == "c":
            return np.argmax(self.predict_proba(x_test), axis=1)
        elif self.task.lower() == "r":
            y_hat = []  # 预测值
            for estimator in self.base_estimator:
                y_hat.append(estimator.predict(x_test))
            return np.mean(y_hat, axis=0)

3.2 Bagging算法测试

test_bagging_c1.py

from sklearn.datasets import load_iris
from ch8.bagging_c_r import BaggingClassifierRegressor
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


iris = load_iris()
X, y = iris.data, iris.target
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=True, random_state=42)

base_es = DecisionTreeClassifier(max_depth=10, max_bins=50, is_feature_all_R=True)
bagcr = BaggingClassifierRegressor(base_estimator=base_es, n_estimators=20, task="c", OOB=True)
bagcr.fit(X_train, y_train)
y_hat = bagcr.predict(X_test)
print(classification_report(y_test, y_hat))
print("包外估计的精度:", bagcr.oob_score)

 test_bagging_c2.py

from sklearn.datasets import load_iris
from ch8.bagging_c_r import BaggingClassifierRegressor
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import classification_report, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


nursery = pd.read_csv("../ch4/data/nursery.csv").dropna()
X, y = np.asarray(nursery.iloc[:, :-1]), np.asarray(nursery.iloc[:, -1])
y = LabelEncoder().fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, shuffle=True, random_state=42)

base_es = DecisionTreeClassifier(max_depth=10)
bagcr = BaggingClassifierRegressor(base_estimator=base_es, n_estimators=30, task="c")
bagcr.fit(X_train, y_train)
y_hat = bagcr.predict(X_test)
print(classification_report(y_test, y_hat))
# print("包外估计的精度:", bagcr.oob_score)

y_test_scores = []
for i in range(30):
    bagcr = BaggingClassifierRegressor(base_estimator=base_es, n_estimators=1, task="c")
    bagcr.fit(X_train, y_train)
    y_hat = bagcr.predict(X_test)
    y_test_scores.append(accuracy_score(y_test, y_hat))

plt.figure(figsize=(7, 5))
plt.plot(range(1, 31), y_test_scores, "ko-", lw=1.5)
plt.xlabel("Training Times", fontsize=12)
plt.ylabel("Test Accuracy", fontsize=12)
plt.grid(ls=":")
plt.show()


 test_bagging_r.py

import numpy as np
import matplotlib.pyplot as plt
from ch4.decision_tree_R import DecisionTreeRegression
from ch8.bagging_c_r import BaggingClassifierRegressor
from sklearn.metrics import r2_score


f = lambda x: 0.5 * np.exp(-(x + 3) ** 2) + np.exp(-x ** 2) + 1.5 * np.exp(-(x - 3) ** 2)

np.random.seed(0)
N = 200
X = np.random.rand(N) * 10 - 5
X = np.sort(X)
y = f(X) + 0.05 * np.random.randn(N)
X = X.reshape(-1, 1)
# print(X)

base_estimator = DecisionTreeRegression(max_bins=30, max_depth=8)
model = BaggingClassifierRegressor(base_estimator=base_estimator, n_estimators=100, task="r")
model.fit(X, y)

X_test = np.linspace(1.1 * X.min(axis=0), 1.1 * X.max(axis=0), 1000).reshape(-1, 1)

y_bagging_hat = model.predict(X_test)

base_estimator.fit(X, y)
y_cart_hat = base_estimator.predict(X_test)

plt.figure(figsize=(7, 5))
plt.scatter(X, y, s=10, c="k", label="Raw Data")
plt.plot(X_test, f(X_test), "k-", lw=1.5, label="True F(x)")
plt.plot(X_test, y_bagging_hat, "r-", label="Bagging(R2 = %.5f)" % r2_score(f(X_test), y_bagging_hat))
plt.plot(X_test, y_cart_hat, "b-", label="CART(R2 = %.5f)" % r2_score(f(X_test), y_cart_hat))
plt.legend(frameon=False)
plt.xlabel("X", fontsize=12)
plt.ylabel("Y", fontsize=12)
plt.grid(ls=":")
plt.title("Bagging(100 estimators) VS CART Regression", fontsize=14)
plt.show()

四、随机森林算法

4.1 随机森林算法

 rf_classifier_regressor.py

import numpy as np
import copy
from ch4.decision_tree_R import DecisionTreeRegression  # CART
from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, r2_score


class RandomForestClassifierRegressor:
    """
    随机森林RF是Bagging的一个扩展变体。 RF在以决策树为基学习器构建Bagging集成的基础上,
    进一步在决策树的训练过程中引入了随机属性选择, 即对训练样本和输入变量增加随机扰动。
    """
    def __init__(self, base_estimator=None, n_estimators=10, feature_sampling_rate=0.5,
                 task="C", OOB=False, feature_importance=False):
        """
        :param base_estimator: 基学习器
        :param n_estimators: 基学习器的个数T
        :param task: 任务:C代表分类任务,R代表回归任务
        :param OOB: 布尔变量,True表示进行包外估计
        :param feature_sampling_rate: 特征变量的抽样率
        :param feature_importance: 布尔变量,表示是否进行特征重要性的评估
        """
        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.feature_sampling_rate = feature_sampling_rate
        if task.lower() not in ["c", "r"]:
            raise ValueError("Bagging任务仅限分类(C/c)、回归(R/r)")
        self.task = task
        # 如果不提供基学习器,则默认决策树作为基分类器
        if self.base_estimator is None:
            if self.task.lower() == "c":
                base_estimator = DecisionTreeClassifier()
            elif self.task.lower() == "r":
                base_estimator = DecisionTreeRegression()
        self.base_estimator = [copy.deepcopy(base_estimator)
                               for _ in range(self.n_estimators)]
        self.OOB = OOB  # 是否进行包外估计
        self.oob_indices = []  # 保存每次有放回采样未被使用的样本索引
        self.y_oob_hat = None  # 包括估计样本预测值(回归)或预测类别概率(分类)
        self.oob_score = None  # 包外估计的评分,分类和回归
        self.feature_importance = feature_importance
        self.feature_importance_scores = None  # 特征变量的重要性评分
        self.feature_importance_indices = []  # 针对每个基学习器,存储特征变量的抽样索引

    def fit(self, x_train, y_train):
        """
        随机森林算法(包含分类和回归)的训练
        :param x_train: 训练集
        :param y_train: 目标集
        :return:
        """
        x_train, y_train = np.asarray(x_train), np.asarray(y_train)
        n_samples, n_features = x_train.shape
        for estimator in self.base_estimator:
            # 1. 有放回的随机重采样训练集
            indices = np.random.choice(n_samples, n_samples, replace=True)  # 采样样本索引
            indices = np.unique(indices)
            x_bootstrap, y_bootstrap = x_train[indices, :], y_train[indices]
            # 2. 对特征属性变量进行抽样
            fb_num = int(self.feature_sampling_rate * n_features)  # 抽样特征数
            feature_idx = np.random.choice(n_features, fb_num, replace=False)  # 不放回
            self.feature_importance_indices.append(feature_idx)
            x_bootstrap = x_bootstrap[:, feature_idx]  # 获取特征变量抽样后的训练样本
            # 3. 基于采样数据,训练基学习器
            estimator.fit(x_bootstrap, y_bootstrap)
            # 存储每个基学习器未使用的样本索引
            n_indices = set(np.arange(n_samples)).difference(set(indices))
            self.oob_indices.append(list(n_indices))  # 每个基学习器未参与训练的样本索引

        # 4. 包外估计
        if self.OOB:
            if self.task.lower() == "c":
                self._oob_score_classifier(x_train, y_train)
            else:
                self._oob_score_regressor(x_train, y_train)

        # 5. 特征重要性估计
        if self.feature_importance:
            if self.task.lower() == "c":
                self._feature_importance_score_classifier(x_train, y_train)
            else:
                self._feature_importance_score_regressor(x_train, y_train)

    def _oob_score_classifier(self, x_train, y_train):
        """
        分类任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    x_sample = x_train[i, self.feature_importance_indices[idx]]
                    y_hat = self.base_estimator[idx].predict_proba(x_sample.reshape(1, -1))
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(np.c_[y_hat_i], axis=0))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = accuracy_score(y_true, np.argmax(self.y_oob_hat, axis=1))

    def _oob_score_regressor(self, x_train, y_train):
        """
        回归任务的包外估计
        :param x_train:
        :param y_train:
        :return:
        """
        self.y_oob_hat, y_true = [], []
        for i in range(x_train.shape[0]):  # 针对每个训练样本
            y_hat_i = []  # 当前样本在每个基学习器下的预测概率,个数未必等于self.n_estimators
            for idx in range(self.n_estimators):  # 针对每个基学习器
                if i in self.oob_indices[idx]:  # 如果该样本属于包外估计
                    x_sample = x_train[i, self.feature_importance_indices[idx]]
                    y_hat = self.base_estimator[idx].predict(x_sample.reshape(1, -1))
                    y_hat_i.append(y_hat[0])
            # print(y_hat_i)
            if y_hat_i:  # 非空,计算各基学习器预测类别概率的均值
                self.y_oob_hat.append(np.mean(y_hat_i))
                y_true.append(y_train[i])  # 存储对应的真值
        self.y_oob_hat = np.asarray(self.y_oob_hat)
        self.oob_score = r2_score(y_true, self.y_oob_hat)

    def _feature_importance_score_classifier(self, x_train, y_train):
        """
        分类问题的特征变量重要性评估计算
        :param x_train:
        :param y_train:
        :return:
        """
        n_feature = x_train.shape[1]
        self.feature_importance_scores = np.zeros(n_feature)  # 特征变量重要性评分
        for f_j in range(n_feature):  # 针对每个特征变量
            f_j_scores = []  # 当前第j个特征变量在所有基学习器预测的OOB误差变化
            for idx, estimator in enumerate(self.base_estimator):
                f_s_indices = list(self.feature_importance_indices[idx])  # 获取当前基学习器的特征变量索引
                if f_j in f_s_indices:  # 表示当前基学习器中存在第j个特征变量
                    # 1. 计算基于OOB的测试误差error
                    x_samples = x_train[self.oob_indices[idx], :][:, f_s_indices]  # OOB样本以及特征抽样
                    y_hat = estimator.predict(x_samples)
                    error = 1 - accuracy_score(y_train[self.oob_indices[idx]], y_hat)
                    # 2. 计算第j个特征随机打乱顺序后的测试误差
                    np.random.shuffle(x_samples[:, f_s_indices.index(f_j)])  # 原地打乱第j个特征变量取值,其他特征取值不变
                    y_hat_j = estimator.predict(x_samples)
                    error_j = 1 - accuracy_score(y_train[self.oob_indices[idx]], y_hat_j)
                    f_j_scores.append(error_j - error)
            # 3. 计算所有基学习器对当前第j个特征评分的均值
            self.feature_importance_scores[f_j] = np.mean(f_j_scores)
        return self.feature_importance_scores

    def _feature_importance_score_regressor(self, x_train, y_train):
        """
        回归任务的特征变量重要性评估计算
        :param x_train:
        :param y_train:
        :return:
        """
        n_feature = x_train.shape[1]
        self.feature_importance_scores = np.zeros(n_feature)  # 特征变量重要性评分
        for f_j in range(n_feature):  # 针对每个特征变量
            f_j_scores = []  # 当前第j个特征变量在所有基学习器预测的OOB误差变化
            for idx, estimator in enumerate(self.base_estimator):
                f_s_indices = list(self.feature_importance_indices[idx])  # 获取当前基学习器的特征变量索引
                if f_j in f_s_indices:  # 表示当前基学习器中存在第j个特征变量
                    # 1. 计算基于OOB的测试误差error
                    x_samples = x_train[self.oob_indices[idx], :][:, f_s_indices]  # OOB样本以及特征抽样
                    y_hat = estimator.predict[x_samples]
                    error = 1 - r2_score(y_train[self.oob_indices[idx]], y_hat)
                    # 2. 计算第j个特征随机打乱顺序后的测试误差
                    np.random.shuffle(x_samples[:, f_s_indices.index(f_j)])  # 原地打乱第j个特征变量取值,其他特征取值不变
                    y_hat_j = estimator.predict[x_samples]
                    error_j = 1 - r2_score(y_train[self.oob_indices[idx]], y_hat_j)
                    f_j_scores.append(error_j - error)
            # 3. 计算所有基学习器对当前第j个特征评分的均值
            self.feature_importance_scores[f_j] = np.mean(f_j_scores)
        return self.feature_importance_scores

    def predict_proba(self, x_test):
        """
        分类任务中测试样本所属类别的概率预测
        :param x_test:
        :return:
        """
        if self.task.lower() != "c":
            raise ValueError("predict_proba()仅适用于分类任务。")
        x_test = np.asarray(x_test)
        y_test_hat = []  # 用于存储测试样本所属类别概率
        for idx, estimator in enumerate(self.base_estimator):
            x_test_bootstrap = x_test[:, self.feature_importance_indices[idx]]
            y_test_hat.append(estimator.predict_proba(x_test_bootstrap))
        # print(y_test_hat)
        return np.mean(y_test_hat, axis=0)

    def predict(self, x_test):
        """
        分类任务:预测测试样本所属类别,类别概率大者索引为所属类别
        回归任务:预测测试样本,对每个基学习器预测值简单平均
        :param x_test:
        :return:
        """
        if self.task.lower() == "c":
            return np.argmax(self.predict_proba(x_test), axis=1)
        elif self.task.lower() == "r":
            y_hat = []  # 预测值
            for idx, estimator in enumerate(self.base_estimator):
                x_test_bootstrap = x_test[:, self.feature_importance_indices[idx]]
                y_hat.append(estimator.predict(x_test_bootstrap))
            return np.mean(y_hat, axis=0)

 4.2 随机森林算法测试

test_rf_c1.py

 

from sklearn.datasets import load_iris, load_wine, load_digits
from ch8.randomforest.rf_classifier_regressor import RandomForestClassifierRegressor
# from ch4.decision_tree_C import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd


iris = load_iris()
X, y = iris.data, iris.target
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=True, random_state=42)

# base_es = DecisionTreeClassifier(max_depth=10, max_bins=50, is_feature_all_R=True)
base_es = DecisionTreeClassifier(max_depth=10)
rf_model = RandomForestClassifierRegressor(base_estimator=base_es, n_estimators=30,
                                        task="c", OOB=True, feature_importance=True)
rf_model.fit(X_train, y_train)
y_hat = rf_model.predict(X_test)
print(classification_report(y_test, y_hat))
print("包外估计的精度:", rf_model.oob_score)
print("特征重要性评分:", rf_model.feature_importance_scores)

plt.figure(figsize=(9, 5))
data_pd = pd.DataFrame([iris.feature_names, rf_model.feature_importance_scores]).T
data_pd.columns = ["Feature Names", "Importance"]
sns.barplot(x="Importance", y="Feature Names", data=data_pd)
plt.title("Iris DataSet Feature Importance Scores", fontdict={"fontsize": 14})
plt.grid(ls=":")
print(data_pd)
plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/424199.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

缓存相关问题:雪崩、穿透、预热、更新、降级的深度解析

✨✨祝屏幕前的小伙伴们每天都有好运相伴左右✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 目录 引言 1. 缓存雪崩 1.1 问题描述 1.2 解决方案 1.2.1 加锁防止并发重建缓存 2. 缓存穿透 2.1 问题描述 2.2 解决方案 2.2.1 …

Ubuntu下安装Scala

前言 弄了一下终于成功装上了,这里对此进行一下总结 安装虚拟机 VMware虚拟机安装Ubuntu(超详细图文教程)_vmware安装ubuntu-CSDN博客https://blog.csdn.net/qq_43374681/article/details/129248167Download Ubuntu Desktop | Download | …

FinalShell连接Linux

远程连接linux 我们使用VMware可以得到Linux虚拟机,但是在/Mware中操作Linux的命令行页面不太方便,主要是: 内容的复制、粘贴跨越VMware不方便 文件的上传、下载跨越VMware不方便 不方便也就是和Linux系统的各类交互,跨越VMwar 到Linux操作系…

win11 更多网络适配器选项

win11更多网络适配器选项查找路径:控制面板→网络和共享中心→更改适配器设置

计算机二级Python刷题笔记------基本操作题23、33、35、37(考察字符串)

文章目录 第二十三题(字符串替换:replace(old,new))第三十三题(字符串遍历)第三十五题(字符串与列表)第三十七题(拼接字符串) 第二十三题(字符串替换&#xf…

Ubuntu进入python时报错:找不到命令 “python”,“python3” 命令来自 Debian 软件包 python3

一、错误描述 二、解决办法 进入”/usr/bin”目录下,查看/usr/bin目录中所有与python相关的文件和链接: cd /usr/bin ls -l | grep python 可以看到Python3指向的是Python3.10,而并无指向python3的软连接 只需要在python与python3之间手动…

2024.03.02蓝桥云课笔记

1.scanf与printf取消分隔符的限制方法 示例代码: int main() { char s[10];scanf("%d[^\n]",s);printf("%s",s);return 0; } 运行: 输入:Hello World 输出:Hello World 注:其中[]中是一个正则…

YTM32的同步串行通信外设SPI外设详解(Master Part)

YTM32的同步串行通信外设SPI外设详解(Master Part) 文章目录 YTM32的同步串行通信外设SPI外设详解(Master Part)IntroductionFeatures引脚信号时钟源其它不常用功能 Pricinple & Mechinism基于FIFO的命令和数据管理机制锁定配…

19. 学习人工智能如何从阅读论文中获取一手信息,并推荐一些技术论文

本文为 「茶桁的 AI 秘籍 - BI 篇 第 19 篇」 文章目录 Hi,你好。我是茶桁。 上节课给大家预告了,今天这节课咱们来看一篇论文。我们之前几节课中讲解的内容其实是在一些论文里面有使用到的。 我们先看一下论文的内容,讲讲 ALS。 就像我上节…

unsubscribe:Angular 项目中常见场景以及是否需要 unsubscribe

本文由庄汇晔同学编写~ 在 Angular 项目中,经常会使用到 observable subscribe,但是 subscribe 读取了数据之后,真的就是万事大吉了吗?这个问题的答案或许是,或许不是。有些 observable 需要 unsubscribe,…

【研发日记】Matlab/Simulink技能解锁(四)——在Simulink Debugger窗口调试

前言 见《【研发日记】Matlab/Simulink技能解锁(一)——在Simulink编辑窗口Debug》 见《【研发日记】Matlab/Simulink技能解锁(二)——在Function编辑窗口Debug》 见《【研发日记】Matlab/Simulink技能解锁(三)——在Stateflow编辑窗口Debug》 Block断点 前文在Simulink编辑窗口…

嵌入式Linux中GPIO设置的一些基本指令和步骤

一、GPIO的介绍 嵌入式Linux中的GPIO(General Purpose Input/Output,通用输入/输出)是一种常用的接口,允许开发者直接控制硬件设备的某些引脚,进行诸如LED控制、传感器读取、设备状态监测等任务。 二、设置步骤和示例…

雷电将军部分技能AOE范围测试

简单说一下,以往的AOE范围数据大部分来自Dim提供的拆包文件或泄露的GM端控制台显示的距离数据,如《AOE范围学》中的数据,然而米哈游自1.6版本及以后未再公开泄露过GM端,因为一些原因Dim也没再更新拆包文件中角色技能参数相关的部分…

C2_W2_Assignment_吴恩达_中英_Pytorch

Neural Networks for Handwritten Digit Recognition, Multiclass In this exercise, you will use a neural network to recognize the hand-written digits 0-9. 在本次练习中,您将使用神经网络来识别0-9的手写数字。 Outline 1 - Packages 2 - ReLU Activatio…

服务器有几种http强制跳转https设置方法

目前为站点安装SSL证书开启https加密访问已经是件很简单的事了,主要是免费SSL证书的普及,为大家提供了很好的基础。 Apache环境下如何http强制跳转https访问。Nginx环境下一般是通过修改“你的域名.conf”文件来实现的。 而Apache环境下通过修改.htacces…

类与对象(一)

目录 1 什么是面向过程和面向对象 1.1举例 2类的引入 3类的定义 3.1类的两种定义方式: 4.类的访问限定符及封装 4.1访问限定符 4.1.1为什么要有访问限定符 4.1.2有哪些访问限定符呢? 4.1.3简单举例理解 4.1.4C中的class与struct的区别(面试问题…

Tomcat基础及与Nginx实现动静分离,搭建高效稳定的个人博客系统

目录 引言 一、TOMCAT基础功能 (一)自动解压war包 (二)状态页 1.登录状态页 2.远程登录 (三)服务管理界面 (四)Host虚拟主机 1.设置虚拟主机 2.建立站点目录与文件 二、实…

python 使用curl_cffi 绕过jax3指纹-Cloudflare 5s盾

现在越来越多的网站已经能够通过JA3或者其他指纹信息,来识别你是不是爬虫了。传统的方式比如换UA,加代理是没有任何意义了,所以这个时候我们就需要使用到curl_cffi 了。 1.TLS 指纹是啥? 在绝大多数的网站都已经使用了 HTTPS&am…

Java项目:32 基于springboot的课程作业管理系统(含源码数据库+文档免费送)

作者主页:舒克日记 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 管理员:首页、个人中心、公告信息管理、班级管理、学生管理、教师管理、课程类型管理、课程信息管理、学生选课管理、作业布置管理、作业提…

sprintboot集成flink快速入门demo

一、flink介绍 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。Flink最适合的应用场景是低时延的数据处理(Data Processing&…