寻找峰值[中等]

在这里插入图片描述

优质博文IT-BLOG-CN

一、题目

峰值元素是指其值严格大于左右相邻值的元素。给你一个整数数组nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设nums[-1] = nums[n] = -∞

你必须实现时间复杂度为O(log n)的算法来解决此问题。

示例 1:
输入:nums = [1,2,3,1]
输出:2
解释:3是峰值元素,你的函数应该返回其索引2

示例 2:
输入:nums = [1,2,1,3,5,6,4]
输出:15
解释:你的函数可以返回索引1,其峰值元素为2;或者返回索引5, 其峰值元素为6

提示:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
对于所有有效的i都有nums[i] != nums[i + 1]

二、代码

方案一:寻找最大值

由于题目保证了nums[i]≠nums[i+1],那么数组nums中最大值两侧的元素一定严格小于最大值本身。因此,最大值所在的位置就是一个可行的峰值位置。

我们对数组nums进行一次遍历,找到最大值对应的位置即可。

class Solution {
    public int findPeakElement(int[] nums) {
        int idx = 0;
        for (int i = 1; i < nums.length; ++i) {
            if (nums[i] > nums[idx]) {
                idx = i;
            }
        }
        return idx;
    }
}

时间复杂度: O(n),其中n是数组nums的长度。
空间复杂度: O(1)

方案二:二分查找

首先要注意题目条件,在题目描述中出现了nums[-1] = nums[n] = -∞,这就代表着 只要数组中存在一个元素比相邻元素大,那么沿着它一定可以找到一个峰值。

根据上述结论,我们就可以使用二分查找找到峰值

查找时,左指针l,右指针r,以其保持左右顺序为循环条件

根据左右指针计算中间位置m,并比较mm+1的值,如果m较大,则左侧存在峰值,r = m,如果m + 1较大,则右侧存在峰值,l = m + 1

class Solution {
    public int findPeakElement(int[] nums) {
        int left = 0, right = nums.length - 1;
        for (; left < right; ) {
            int mid = left + (right - left) / 2;
            if (nums[mid] > nums[mid + 1]) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

时间复杂度: O(log⁡n),其中n是数组nums的长度。
空间复杂度: O(1)

方案三:迭代爬坡

俗话说「人往高处走,水往低处流」。如果我们从一个位置开始,不断地向高处走,那么最终一定可以到达一个峰值位置。

因此,我们首先在[0,n)的范围内随机一个初始位置i,随后根据nums[i−1],nums[i],nums[i+1]三者的关系决定向哪个方向走:
【1】如果nums[i−1]<nums[i]>nums[i+1],那么位置i就是峰值位置,我们可以直接返回i作为答案;
【2】如果nums[i−1]<nums[i]<nums[i+1],那么位置i处于上坡,我们需要往右走,即i←i+1

如果nums[i−1]>nums[i]>nums[i+1],那么位置i处于下坡,我们需要往左走,即i←i−1

如果nums[i−1]>nums[i]<nums[i+1],那么位置i位于山谷,两侧都是上坡,我们可以朝任意方向走。

如果我们规定对于最后一种情况往右走,那么当位置i不是峰值位置时:
【1】如果nums[i]<nums[i+1],那么我们往右走;
【2】如果nums[i]>nums[i+1],那么我们往左走。

class Solution {
    public int findPeakElement(int[] nums) {
        int n = nums.length;
        int idx = (int) (Math.random() * n);

        while (!(compare(nums, idx - 1, idx) < 0 && compare(nums, idx, idx + 1) > 0)) {
            if (compare(nums, idx, idx + 1) < 0) {
                idx += 1;
            } else {
                idx -= 1;
            }
        }
        
        return idx;
    }

    // 辅助函数,输入下标 i,返回一个二元组 (0/1, nums[i])
    // 方便处理 nums[-1] 以及 nums[n] 的边界情况
    public int[] get(int[] nums, int idx) {
        if (idx == -1 || idx == nums.length) {
            return new int[]{0, 0};
        }
        return new int[]{1, nums[idx]};
    }

    public int compare(int[] nums, int idx1, int idx2) {
        int[] num1 = get(nums, idx1);
        int[] num2 = get(nums, idx2);
        if (num1[0] != num2[0]) {
            return num1[0] > num2[0] ? 1 : -1;
        }
        if (num1[1] == num2[1]) {
            return 0;
        }
        return num1[1] > num2[1] ? 1 : -1;
    }
}

时间复杂度: O(n),其中n是数组nums的长度。在最坏情况下,数组nums单调递增,并且我们随机到位置0,这样就需要向右走到数组nums的最后一个位置。
空间复杂度: O(1)

方法四:二分查找优化

我们可以发现,如果nums[i]<nums[i+1],并且我们从位置i向右走到了位置i+1,那么位置i左侧的所有位置是不可能在后续的迭代中走到的。

这是因为我们每次向左或向右移动一个位置,要想「折返」到位置i以及其左侧的位置,我们首先需要在位置i+1向左走到位置i,但这是不可能的。

并且根据方法二,我们知道位置i+1以及其右侧的位置中一定有一个峰值,因此我们可以设计出如下的一个算法:
【1】对于当前可行的下标范围[l,r],我们随机一个下标i
【2】如果下标i是峰值,我们返回i作为答案;
【3】如果nums[i]<nums[i+1],那么我们抛弃[l,i]的范围,在剩余[i+1,r]的范围内继续随机选取下标;
【4】如果nums[i]>nums[i+1],那么我们抛弃[i,r]的范围,在剩余[l,i−1]的范围内继续随机选取下标。

在上述算法中,如果我们固定选取i[l,r]的中点,那么每次可行的下标范围会减少一半,成为一个类似二分查找的方法,时间复杂度为 O(log⁡n)

class Solution {
    public int findPeakElement(int[] nums) {
        int n = nums.length;
        int left = 0, right = n - 1, ans = -1;
        while (left <= right) {
            int mid = (left + right) / 2;
            if (compare(nums, mid - 1, mid) < 0 && compare(nums, mid, mid + 1) > 0) {
                ans = mid;
                break;
            }
            if (compare(nums, mid, mid + 1) < 0) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
        return ans;
    }

    // 辅助函数,输入下标 i,返回一个二元组 (0/1, nums[i])
    // 方便处理 nums[-1] 以及 nums[n] 的边界情况
    public int[] get(int[] nums, int idx) {
        if (idx == -1 || idx == nums.length) {
            return new int[]{0, 0};
        }
        return new int[]{1, nums[idx]};
    }

    public int compare(int[] nums, int idx1, int idx2) {
        int[] num1 = get(nums, idx1);
        int[] num2 = get(nums, idx2);
        if (num1[0] != num2[0]) {
            return num1[0] > num2[0] ? 1 : -1;
        }
        if (num1[1] == num2[1]) {
            return 0;
        }
        return num1[1] > num2[1] ? 1 : -1;
    }
}

时间复杂度: O(log⁡n),其中n是数组nums的长度。
空间复杂度: O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/424159.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Python】批量读取文件夹中的excel文件

示例展示 代码 import os import pandas as pd folder_path r"C:\Users\admin\Desktop\excelfile" extension"xlsx" files [file for file in os.listdir(folder_path) if file.endswith(. extension)] for file in files:filepath os.path.join(folde…

ChatGPT支持下的PyTorch机器学习与深度学习技术应用

近年来&#xff0c;随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生&#xff0c;人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术&#xff0c;在许多行业都取得了颠覆性的成果。另外&#xff0c;近年来&#xff0c;Pytorch深度学习框架受…

运用qsort函数进行快排并使用C语言模拟qsort

qsort 函数的使用 首先qsort函数是使用快速排序算法来进行排序的&#xff0c;下面我们打开官网来查看qsort是如何使用的。 这里有四个参数&#xff0c;首先base 是至待排序的数组的首元素的地址&#xff0c;num 是值这个数组的元素个数&#xff0c;size 是指每个元素的大小&am…

数字化转型导师坚鹏:证券公司数字化转型战略、方法与案例

证券公司数字化转型战略、方法与案例 课程背景&#xff1a; 数字化转型背景下&#xff0c;很多机构存在以下问题&#xff1a; 不清楚证券公司数字化转型的发展战略&#xff1f; 不知道证券公司数字化转型的核心方法&#xff1f; 不知道证券公司数字化转型的成功案例&am…

第四十八回 解珍解宝双越狱 孙立孙新大劫牢-Python模块和包概念与使用

吴用对宋江说&#xff0c;有个人&#xff0c;他是石勇的关系&#xff0c;与祝家庄的峦廷玉关系好&#xff0c;还是杨林、邓飞的老相识&#xff0c;他有一计.... 原来在宋江攻打祝家庄的时间段&#xff0c;山东海边登州也发生了一件事。登州山下有一家猎户&#xff0c;弟兄两个…

Linux下进程相关概念详解

目录 一、操作系统 概念 设计操作系统的目的 定位 如何理解“管理” 系统调用和库函数概念 二、进程 概念 描述进程—PCB&#xff08;process control block&#xff09; 查看进程 进程状态 进程优先级 三、其它的进程概念 一、操作系统 概念 任何计算机系统都包…

HPE ProLiant MicroServer Gen8更换坏硬盘(RAID 1+0)

HPE ProLiant MicroServer Gen8今天硬盘告警&#xff0c;坏了一块硬盘&#xff08;估计还是由于上次突然断电导致的&#xff09;&#xff0c;关机&#xff0c;拆下坏硬盘&#xff0c;更换新硬盘&#xff0c;开机后按了一次F1键&#xff0c;系统继续启动并正常使用&#xff0c;同…

VueCli的安装与卸载

文章目录 一.Node安装包的报读网盘提取码二、Vue脚手架Cli三、Vue-CLI使用步骤(自定义安装)1.转换路径并创建项目2.创建步骤的解释(保姆级)3.等待vue项目自己创建好(保姆级) 四、通过npm对vue的安装与卸载 一.Node安装包的报读网盘提取码 下面的链接为地址: Node的百度网盘提取…

面试准备:排序算法大汇总 C++

排序算法总结 直接插入排序 取出未排序部分的第一个元素&#xff0c;与已排序的部分从后往前比较&#xff0c;找到合适的位置。将大于它的已排序的元素向后移动&#xff0c;将该元素插入到合适的位置。 //1. 直接插入排序 void InsertionSort(vector<int>& nums){f…

#WEB前端(HTML属性)

1.实验&#xff1a;a,img 2.IDE&#xff1a;VSCODE 3.记录&#xff1a; a: href插入超链接 默认情况下在本窗口打开链接, target可以设置打开的窗口,parent在父窗口打开&#xff0c;blank新开串口打开,top在顶层串口打开,self为默认在本窗口打开 img: 插入图片 可以插…

走进SQL审计视图——《OceanBase诊断系列》之二

1. 前言 在SQL性能诊断上&#xff0c;OceanBase有一个非常实用的功能 —— SQL审计视图(gv$sql_audit)。在OceanBase 4.0.0及更高版本中&#xff0c;该功能是 gv$ob_sql_audit。它可以使开发和运维人员更方便地排查在OceanBase上运行过的任意一条SQL&#xff0c;无论这些SQL是成…

基于 Amazon EKS 的 Stable Diffusion ComfyUI 部署方案

01 背景介绍 Stable Diffusion 作为当下最流行的开源 AI 图像生成模型在游戏行业有着广泛的应用实践&#xff0c;无论是 ToC 面向玩家的游戏社区场景&#xff0c;还是 ToB 面向游戏工作室的美术制作场景&#xff0c;都可以发挥很大的价值&#xff0c;如何更好地使用 Stable Dif…

Day10:基础入门-HTTP数据包Postman构造请求方法请求头修改状态码判断

目录 数据-方法&头部&状态码 案例-文件探针 案例-登录爆破 工具-Postman自构造使用 思维导图 章节知识点&#xff1a; 应用架构&#xff1a;Web/APP/云应用/三方服务/负载均衡等 安全产品&#xff1a;CDN/WAF/IDS/IPS/蜜罐/防火墙/杀毒等 渗透命令&#xff1a;文件…

数字图像处理 SUJOY滤波器:用于图像边缘检测的通用一阶导数滤波器

1、前言 因为是比较旧的论文,但是据论文作者说SUJOY滤波器为图像边缘检测提供了比其他常用的一阶导数方法(如 Robert 算子、Prewitt 算子、Sobel 算子等)更好的方法。 经过测试感觉并没有作者说的那么好,很水的东西,另外图像领域的事情很少有绝对的,通常都是某些方法适合…

【二分】第k个缺失的数

第K个缺失的数 链接 . - 力扣&#xff08;LeetCode&#xff09;. - 备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/kth-missing-positive-number/ 题目 题解 二段…

医学大数据|文献阅读|有关“胃癌+机器学习”的研究记录

目录 1.基于32基因特征构建的机器学习模型可有效预测胃癌患者的预后和治疗反应 2.胃癌患者术后90天死亡率的机器学习风险预测模型 3.使用机器学习模型预测幽门螺杆菌根除患者胃癌患病风险 4.利用初始内窥镜检查和组织学结果进行个性化胃癌发病率预测 1.基于32基因特征构建的…

ABAP - SALV教程07 斑马纹显示和SALV标题

SALV设置斑马纹和标题 METHOD set_layout.DATA: lo_display TYPE REF TO cl_salv_display_settings. * 取得显示对象lo_display co_alv->get_display_settings( ).* 设置ZEBRA显示lo_display->set_striped_pattern( X ). * 设置Titlelo_display->set_list_he…

探讨倒排索引Elasticsearch面试与实战:从理论到实践

在当前大数据时代&#xff0c;Elasticsearch&#xff08;以下简称为ES&#xff09;作为一种强大的搜索和分析引擎&#xff0c;受到了越来越多企业的青睐。因此&#xff0c;对于工程师来说&#xff0c;掌握ES的面试准备和实战经验成为了必备技能之一。本文将从ES的面试准备和实际…

【MCAL】TC397+EB-tresos之CAN配置实战 - (CAN/CANFD)

本篇文章介绍了在TC397平台使用EB-tresos对CAN驱动模块进行配置的实战过程,不仅介绍了标准CAN的发送与接收&#xff0c;还介绍了CANFD的实现与调试以及扩展帧的使用。M_CAN是德国博世公司开发的IP&#xff0c;因为英飞凌的芯片完整的集成了这个IP&#xff0c;所以整体的配置都比…

leetcode 热题 100_三数之和

题解一&#xff1a; 双指针遍历&#xff1a;暴力解法的三层遍历会超时&#xff0c;因此需要优化遍历的过程。首先是需要对结果进行去重&#xff0c;这里采用排序跳过重复值的做法&#xff0c;在指针遍历时跳过已经遍历过的相同值。在第一层循环确定第一个值后&#xff0c;剩下两…